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h i g h l i g h t s

• An all-Mach/all-speed method was applied to the transition to turbulence and mixing.
• An algorithmic improvement to its convergence properties was made.
• An in-house, fully implicit, fully parallel DNS solver was developed.
• The physics of the transition to turbulence and mixing was successfully captured.
• A proper amount of dissipation is required at high Mach numbers for stability.
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a b s t r a c t

In this study, a temporally-evolving incompressible and compressible Turbulent Shear
Layer (TSL) instability problem is solved using an all-speed (all-Mach), implicit, non-
dissipative and kinetic energy conserving algorithm. An in-house, fully parallel, finite-
volumeDirectNumerical Simulation (DNS) solverwas developedusing PETSc. Convergence
characteristics at low-Mach numbers were also improved using a relaxation procedure.
We aim here to assess the performance and behavior of the present algorithm for complex
flows which contain multi-scale physics and gradually evolve into turbulence. The results
show that the algorithm is able to produce correct physical mechanisms and capture the
evolution of the turbulent fluctuations for both incompressible and compressible cases. It
is observed that the non-dissipative and kinetic energy conserving properties make the
algorithm powerful and applicable to challenging problems. For higher Mach numbers, a
shock-capturing or a dissipative mechanism is required for robustness.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

We present a three-dimensional Direct Numerical Simulation (DNS) study of mixing in temporally-evolving Turbulent
Shear Layer (TSL) instability. For this purpose, an in-house, fully parallel, finite-volume DNS solver, iDNS, was developed,
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based on a fully implicit, non-dissipative, and discrete kinetic energy conserving algorithm recently proposed by Hou and
Mahesh [1]. The PETSc library was utilized for an efficient parallelism [2].

Our aim here is twofold: first, to demonstrate the algorithm’s ability to evolve perturbations into turbulent mixing for
the base flow with the convective Mach number Mc = 0.3, and, second, to analyze the effects of compressibility on the
growth rate of the instability by increasing the convective Mach number.

The following sections include a brief review of the algorithm with a further improvement in convergence, the solver
details, the definition and the numerical setup of the problem. The results obtained are analyzed and compared to those
from previous experimental and numerical studies.

2. The numerical method

The algorithm solves the set of time-dependent, three-dimensional compressible Navier–Stokes equations. These are
non-dimensionalized by using the reference values. Unlike in many other methods, pressure is non-dimensionalized, as

p =
pd−pref
ρrefu2ref

, which is known as incompressible scaling or low-Mach number scaling [3,4]. The resulting non-dimensional

forms of the equations satisfy the incompressibility condition, and allow to study low-Mach number flows with the same
algorithm without encountering the acoustic stiffness problem, when the Mach number goes to zero. The algorithm is
second-order in both space and time on orthogonal grids. It is stable and robust at high-Reynolds numbers [1]. It is a pressure-
correction type of algorithmwhich uses an iterative predictor–corrector approach to update the flow variables. The variables
are stored at the cell centers. A fully implicit, finite-volume discretization is used. The discretization is centered in both
space and time to ensure the non-dissipativeness. Thermodynamic quantities such as density, pressure, and temperature
are also staggered in time by half a time step relative to the velocities [5]. The values of the variables at cell faces are
obtained by symmetric interpolation, which is the simple averaging of two adjacent cell-center values. This also ensures
the conservation of kinetic energy discretely at the low-Mach number limit [6]. The face-normal velocity, Vn, is treated as
a separate flow variable like the velocity and is updated in time [7,8]. Vn is stored at the center of the cell faces directly to
mimic the staggered grids, to prevent odd–even decoupling in pressure in space. In order to give a fully implicit treatment of
pressure, the algorithmworks with a weighted sum of previous, current, and predicted values of the pressure, instead of the
pressure itself directly [5]. An additional correction to pressure is also adopted in the algorithm to enhance the convergence
properties by preventing possible successive oscillating pressure corrections in time [9]. This procedure provides a time-
and space-dependent relaxation factor for the pressure at the end of each time-step for low-Mach number flows.

3. Solver details

In order to perform this study, an in-house, fully parallel DNS solver, iDNS, was developed based on the algorithm
mentioned above and the PETSc parallel library. iDNS is a single-block, structured, fully implicit, finite-volume solver
working on uniform Cartesian grids. Fig. 1 shows the flowchart of iDNS and the iterative solution procedure as well. It
consists of three parts: pre-processing, core and post-processing. In pre-processing, the PETSc framework is initialized. Grid
related quantities and initial conditions for the simulations are generated. Core performs all steps for the solution of the
discretized equations. Post-processing calculates necessary quantities for analyzing and comparison, and also stores them
into files. iDNS was written in a modular fashion using Fortran syntax. The linear systems arising from the discretization
are first pre-conditioned by incomplete-LU with zero-filling (ILU(0)), and are then solved using GMRES. During the parallel
performance tests, very good speed-up and efficiency results were obtained. Tests also showed that the solver is scalable,
since it maintains the efficiency when increasing the problem size and the number of cores.

4. The problem definition and setup

Turbulent shear layers are of interest for many physical and engineering flows such as jets, wakes and mixing in
combustion. They are induced by strong gradients in the shear stress. Although they have a relatively simple configuration,
complex physical phenomena are included in these flows. They are mostly dominated by large-scale, quasi-2D, organized
structures. However, they can rapidly undergo transition to turbulence in 3D. The first theoretical analyseswere presented in
the 50’s and 60’s [10]. Experimental investigations began in the 70’s [11,12], and this was followed by early DNS simulations
in the 80’s and 90’s [13,14] with the help of the advances in computer technology. Recently, well-resolved numerical
simulations were performed [15,16]. There has remained an ongoing interest in turbulent shear layers and need for better
understanding of their physical mechanisms, due to the requirements of flight (such as in wake control) and combustion
technologies (such as in supersonic mixing), for developing more efficient systems [17]. They can be studied both spatially
and temporally. In spatially-evolving mixing layers, mixing layer thickness of two emerging streams of fluids develops in
the streamwise direction. Such development requires a large extent of the domain. This is computationally much more
expensive to track than the temporally-evolving mixing layers where the thickness of the layer increases as a function of
time rather than as a function of the streamwise coordinate.

The flow is initialized with a hyperbolic tangent function for the mean streamwise velocity, ū =
1u
2 tanh


−

y
2δθ (0)


,

where δθ (0) is the initial momentum thickness. This defines two parallel streamsmoving in opposite directionswith the same
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Fig. 1. Flowchart of iDNS.

velocity, 1u
2 , where 1u is the velocity difference between the lower and the upper streams. It is also taken as the reference

velocity. The normalwise (y) and the spanwise (z) mean velocities are set to zero. The initial densities are equal for the two
streams and are set to unity. The initial pressure is uniform as well. It is set to give the speed of sound as unity and is chosen
as the reference pressure. The Reynolds number based on the initial momentum thickness, Reθ , the velocity difference, and
the average dynamic viscosity is 160 and the Reynolds number based on the initial vorticity thickness (δω(0)), Reω , is 680.
The ratio of the specific heats, γ , is 1.4 and the Prandtl number, Pr , is 0.72. The density ratio between streams is equal to 1.
Different convective Mach numbers are studied. The idea of the convective Mach number was first introduced in order to
identify the effects of compressibility on the shear-layer growth rate. For equal densities and specific heats, it can bewritten
as Mc =

1u
c1+c2

, where c1 and c2 denote the speeds of sound for each of the streams.

The initial momentum thickness is taken as the reference length scale. The reference scale is τ =
δω(0)
1u .

The boundary conditions are periodic in the streamwise (x) and spanwise (z) directions. Inviscid slip-wall boundary
conditions are used at bottom and top boundaries in the normalwise (y) direction. The face-normal velocities require special
treatment and must be set to zero on inviscid slip-walls.

The non-dimensional time-steps are set to 6× 10−3 for the quasi-incompressible case whereMc is 0.3, 1× 10−2 for the
mildly-compressible cases where Mc = 0.5, 0.7, and 5 × 10−3 for the highly compressible case where Mc = 0.9. The flow
was followed up to the very late non-linear stage, and then the simulation was stopped.
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Fig. 2. Time evolution of momentum thickness forMc = 0.3.

The same problem domain as was considered by Pantano and Sarkar [16] is used for our computations. The domain is
very large, especially in the streamwise direction, in order to allow the flow to evolve into a self-similar state. This resolution
is also sufficient for representing the large-scale structures in the flow, as shown by the same authors using a calculation of
the integral length scales (which are sufficiently small compared to the domain size in homogeneous directions) and two-
point correlations (which are decorrelated over half the domain size in homogeneous directions) in the self-similar state.
The domain size is given in terms of the initial momentum thickness as Lx × Ly × Lz = 345δθ (0)× 172δθ (0)× 86δθ (0) with
corresponding resolution Nx ×Ny ×Nz = 512× 256× 128 for the cases considered. The initial momentum thickness is set
to 0.093. A uniform orthogonal grid is used.

In addition to these mean values, turbulent three-dimensional velocity fluctuations are superimposed on the initial
mean velocity components. The fluctuations are generated on the basis of a technique described by Davidson [18] using the
isotropic turbulence energy spectrum, E(κ) = u′

2
rms(

κ
κ0

)4 exp(−2( κ
κ0

)4), where κ0 is the peak wave-number. κ0 is adjusted
so as to have 48 peak wavelengths in the streamwise direction for the simulations. u′

rms denotes the rms of the velocity
fluctuations and is given as u′

rms = (ti·1u)where ti is the turbulent intensitywhich is set to 0.1. The initial turbulent velocity
fluctuating field obtained is limited to the shear layer by multiplying with a shape function in the form exp(−(

y
2δθ (0) )

2). The
runs were performed on distributed memory architectures with Intel Xeon dual-core and quad-core processors. 256 cores
with 2 GB of RAM per core were used for the simulations. The total wall-clock time was 350–500 h, depending onMc . Since
the implicit algorithm allows larger time steps as given above, this computational time is quite acceptable and possibly
much shorter than for an explicit method.

5. Results and discussion

5.1. The quasi-incompressible case

The quasi-incompressible case (Mc = 0.3) is chosen as the base case. This case is also used for the code verification, and
the comparison as well. In order to analyze the results, the momentum thickness, δθ , is first introduced as

δθ =
1

ρ01u2


+∞

−∞

ρ


1
2
1u − ũ1

 
1
2
1u + ũ1


dy (1)

where ũ1 denotes the Favre averaged streamwise velocity component and ρ is the Reynolds averaged density.
As an integral quantity, the momentum thickness is less sensitive to statistical noise than the vorticity thickness,

δω =
1u

( ∂ ū
∂y )max

, and evolves smoothly in time [14]. The growth rate can be found as the slope of a linear curve fit, δ̇θ =
1

1u
dδθ
dt .

The time evolution of the momentum thickness is given in Fig. 2. After an initial settling period, which mainly depends
on the initial fluctuations, an approximate linear growth is observed, in consistency with the previous results. The growth
rate is 0.0182 which is calculated by taking the slope of the curve in the region where the flow is self-similar. Pantano and
Sarkar [16] obtained 0.0184 for the quasi-incompressible case from a DNS database. They also obtained 0.016 in their DNS
study atMc = 0.3. Our value is in good agreement with Pantano and Sarkar [16].

The Reynolds stress transport equation is introduced as in [16] to calculate the Reynolds stress tensor and the turbulent
kinetic energy budget

∂(ρ̄Rij)

∂t
+

∂(ρ̄ũkRij)

∂xk
= ρ̄(Pij − ϵij) −

∂Tijk
∂xk

+ Πij (2)
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Fig. 3. Time evolution of
√
R11 .

a

b

c

d

Fig. 4. Comparison of the Reynolds stresses forMc = 0.3.

where Rij, Pij, ϵij, Tijk, Πij are turbulent stress, production, dissipation, transport and pressure–strain terms, respectively.
Explicit forms and calculations of these terms can be found in [16].

Fig. 3 shows the time evolution of the rms of the velocity fluctuations in the streamwise direction. In consistency with
the previous studies, it starts from an initial value, reaches a peak and then decreases to its specific value. The comparisons
of the Reynolds stresses are given in Fig. 4—compared with those from experiments and other DNS studies. A procedure of
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Table 1
Comparison of the peaks of the Reynolds stresses forMc = 0.3.

√
R11/1u

√
R22/1u

√
R33/1u

√
R12/1u

Bell and Mehta [19] (EXP,Mc = 0) 0.180 0.140 0.146 0.100
Pantano and Sarkar [16] (DNS) 0.155 0.134 0.143 0.103
Hadjadj et al. [20] (LES) 0.170 0.134 0.143 0.106
Foysi and Sarkar [21] (LES) 0.174 0.129 0.143 0.106
Present DNS 0.176 0.133 0.141 0.102

a

b

c

d

Fig. 5. Comparison of the production (a), dissipation (b), mean streamwise velocity (c), and time evolution of anisotropy terms (d) forMc = 0.3.

averaging over the time period between 200 and 600 was applied. As can be seen, the agreement is good. The streamwise
component of the Reynolds stress is larger than the other components. Table 1 compares the peak turbulent intensities of
the Reynolds stresses to those from some prior numerical studies. Our DNS gives similar values to the others. Turbulent
production and dissipation are presented in Fig. 5(a) and (b). Our values are in good agreement with those from the other
DNS studies [16,14].

Fig. 5(c) shows the mean velocity in the streamwise direction and it is compared to those from previous experimental
and numerical studies. umean is again obtained via an averaging between t/τ = 200 and t/τ = 600. The agreement with
other data is good.

The anisotropy of the Reynolds stresses shows the character and the dependence of the velocity fluctuations on the
direction in turbulent flows. Once Reynolds stress terms are calculated, it can be obtained via bij =

Rij
2K −

1
3δij, where K is

the turbulent kinetic energy and δij is the Kronecker delta. It is calculated by integrating over the shear layer [16], which is
approximated by summation.

Time evolutions of the anisotropy of the Reynolds stress terms are also given in Fig. 5(d). Table 2 compares their peak
values to those from the Large-Eddy Simulation (LES) of Foysi and Sarkar [21] and DNS of Pantano and Sarkar [16]. In the
self-similar region (i.e., after a sufficiently long time), the values of the diagonal components of bij reach a constant value.
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Table 2
Comparison of the peaks of the Reynolds stress anisotropies forMc =

0.3.

b11 b22 b12

Foysi and Sarkar [21] (LES) 0.35 −0.20 0.21
Pantano and Sarkar [16] (DNS) 0.26 −0.16 0.19
Present DNS 0.25 −0.16 0.17

a

b

Fig. 6. Comparison of the momentum thicknesses (a) and the growth rates (b) for different values ofMc .

The present peak values are very close to those of Pantano and Sarkar [16]. The anisotropy in the streamwise direction is
stronger than those in the other directions.

5.2. The compressible cases

In the previous section it was demonstrated for the base quasi-incompressible case that the algorithm and the solver
produce the correct physical mechanisms behind the TSL instability. In the following cases, the behavior of the algorithm
in the presence of compressibility effects is investigated. For this purpose, variations ofMc between 0.3 and 0.9 are studied.
The results are presented and are compared with those from previous experimental and numerical studies. Compressibility
effects are also analyzed.

Fig. 6(a) compares the time evolutions of the momentum thicknesses for different convective Mach numbers. A linear fit
for each curve is plotted in the self-similar region for calculation and comparison of the growth rates. It is observed that the
time required to obtain to a self-similar state increases with increasing Mc . The growth rate values are normalized by the
base incompressible growth rate value and are plotted against Mc in Fig. 6(b). The filled circles represent our results. As is
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a

b

c

d

Fig. 7. The effect of compressibility on the various terms of the Reynolds stress transport equation.

clearly seen, the compressibility reduces the growth rate of the instabilities, agreeing well with many previous results and
the widely accepted Langley experimental curve represented by solid line [16,22–26].

Fig. 7 shows that the compressibility effects reduce the Reynolds stress terms, production and dissipation, which is
consistent with the previous studies [16,14,21,27]. The reduction in production is the source of the decrease in the growth
rate, as confirmed by the other DNS studies [16,14,21]. The turbulent dissipation is less affected by the compressibility
than the other terms, as previously noted in [16,21]. A slight increase is observed in the peak values of the Reynolds stress
anisotropies at early times. The diagonal components are more affected than the off-diagonal ones. The overall effect of
increasingMc on the values of bij is not large, which is consistent with previous numerical studies [16,21].

6. Conclusions

An in-house, fully parallel DNS solver, iDNS, was developed, based on a fully implicit, non-dissipative, discrete kinetic
energy conserving, all-speed flow algorithm, and was successfully applied to temporally-evolving Turbulent Shear Layer
(TSL) problem.

TSL simulation results prove that the algorithm is capable of capturing the evolution of the perturbations into a non-
linear hydrodynamic state which can be regarded as the onset of the turbulence. By doing this study, we performed further
assessment of the algorithm and examined its behavior and applicability to these kinds of flows, including complex spatial
and temporal multi-scale physics. All the results compare well to the previous experimental and numerical results. It
seems that non-dissipativeness and discrete kinetic energy conserving properties work well. The improved convergence
characteristic obtained via a time- and space-relaxedprocedure for the pressure saves computational resources andprevents
the loss of accuracy at low-Mach numbers. A dissipative mechanism is necessary for studying higher Mach numbers.
However, single, unified approaches are very attractive for solving such complex problems.
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