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The purpose of this study is to implement accurate methods of detection and classification of benign and
malignant breast masses in mammograms. Our new proposed method, which can be used as a diagnostic
tool, is denoted Local Seed Region Growing-Spherical Wavelet Transform (LSRG-SWT), and consists of
four steps. The first step is homomorphic filtering for enhancement, and the second is detection of the
region of interests (ROIs) using a Local Seed Region Growing (LSRG) algorithm, which we developed.
The third step incoporates Spherical Wavelet Transform (SWT) and feature extraction. Finally the fourth
step is classification, which consists of two sequential components: the 1st classification distinguishes
the ROISs as either mass or non-mass and the 2nd classification distinguishes the masses as either benign
or malignant using a Support Vector Machine (SVM). The mammograms used in this study were acquired
from the hospital of Istanbul University (L.U.) in Turkey and the Mammographic Image Analysis Society
(MIAS). The results demonstrate that the proposed scheme LSRG-SWT achieves 96% and 93.59% accuracy
in mass/non-mass classification (1st component) and benign/malignant classification (2nd component)
respectively when using the 1.U. database with k-fold cross validation. The system achieves 94% and
91.67% accuracy in mass/non-mass classification and benign/malignant classification respectively when

using the I.U. database as a training set and the MIAS database as a test set with external validation.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Among various cancers, breast cancer places at the top in
women, both in the developed and the developing countries.
There is a parallel increase in the incidence of this disease with
life expectancy and urbanization [1,2]. Previously, the most effec-
tive way to be able to survive breast cancer is detecting it in an
early phase. The significance of mammography is to reduce deaths
from breast cancer by early detection of masses. Although this
technology has been developing, it remains difficult in some cases
to interpret a dense mammogram, including some suspicious
region of interest (ROIs). Whether the radiologist is not experi-
enced enough or the contrast is inadequate, unnecessary biopsy
tests are performed against the possibility of breast cancer.
As biopsy tests are expensive and invasive, computer aided
methods, which help to detect true positive masses (TPs) and
eliminate false positives (FPs), have to be developed. Such
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methods have recently achieved adequate performance in assist-
ing radiologists to make a malignant/benign decision by providing
a “second eye” for breast cancer diagnosis.

As wavelets present an efficient decomposition in signals and
images, several wavelet-based studies have been developed
related to mammographical mass detection and classification in
recent years [1-4]. However there are less studies about spherical
wavelet and curvelet transforms because these methods are
new in the literature. Karahaliou et al. [3] investigate clusters of
microcalcifications with their texture properties. Three level
multi-resolution decomposition is implemented using Laws'
exture energy measures, first order statistics and cooccurrence
matrices features to extract ROIs from the surrounding tissue.
Their system, which uses a probabilistic neural network, produces
86% accuracy rate in classifying the masses as normal, benign
or malignant. In the study of Angelini et al. [4] the system classifies
the ROIs as either mass or non-mass. A pixel-based, Discrete
Wavelet Transform-based (DWT) and Overcomplete Wavelet
Transform-based (OWT) image representations are applied to an
SVM system subsequently. The best results are obtained by
DWT and OWT representations. Hwang et al. [5] extract mammo-
graphic image texture features using a Haar wavelet transform.
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They use neural networks, statistical discriminant analysis and
SVM for classification and their system achieves 88% accuracy.

Curvelets represent the discontinuities through edges or curves
in objects or images efficiently. Some studies performing curvelet
transforms in image processing are as follows. Ali et al. [6]
implement a curvelet transform approach to computed tomogra-
phy (CT) images. Their system achieves satisfying results for the
fusion of magnetic resonance. In the study of Binh and Thanh [7], a
curvelet transform-based method is developed for object detec-
tion in speckled images. The constructed segmentation method
presents a sparse expansion for typical smooth-contoured images.

In recent years Buciu and Gacsadi [8] present a study, in which
the mammograms are filtered with Gabor wavelets, and direc-
tional features at different orientation and frequencies are
extracted. Principal component analysis (PCA) is implemented to
reduce the high dimension of filtered and unfiltered data and an
SVM is used to classify the data. They achieve 97.56% sensitivity
and 78.26% specificity. Tahmasbi et al. [9] present a study aiming
to reduce the false negative rate by using Zernike moments as
shape descriptors and margin characteristics. Two groups of the
moments are extracted from the pre-processed mammograms.
The moments that are the most effective ones are chosen and a
backpropagation multilayer perceptron is used for classification,
which performs at a 92.8% accuracy rate.

This paper presents a computer-aided diagnosis system includ-
ing mammographic image enhancement, segmentation and diag-
nosis stages via filtering, mass detection and classification. SWT,
which fits the geometric structure of spherical breast masses, helps
to optimize a multiresolution transform prior to feature extraction.
This study uses two different databases to indicate the superiority
of SWT over DWT and the last scale coefficients over all coefficients.
The new proposed method in this paper is based on a four-stage
algorithm: enhancement with homomorphic filtering; segmenta-
tion with Local Seed Region Growing (LSRG); feature extraction
with Spherical Wavelet Transform (SWT) and finally classification
the ROIs and masses with SVM. The proposed system that we have
called LSRG-SWT can be helpful to extract specific characteristics
from raw data and provide true interpretation to radiologists.

The remainder of this paper is organized as follows. Section 2
gives a brief introduction to homomorphic filtering, Wavelet
Transform, LSRG-SWT and SVM methods. Section 3 discusses
the experimental work while Section 4 presents the results and
Section 5 includes the conclusion.

2. Methodology

In this study the diagnosis task begins with contrast enhance-
ment as seen in Fig. 1. First, we enhance the images by using
homomorphic filtering and in this way local contrast is improved.
Next, the suspicious regions such as masses are extracted using the
proposed LSRG algorithm proposed by adding some local rules and
descriptions to a Seed Region Growing algorithm. The detected
ROIs are not always true positive masses, some of them are non-
mass breast tissue and relatively brighter than the surrounding
tissue. To prevent the increment of false positives and improve
true positive detection, a Spherical Wavelet Transform is imple-
mented prior to feature extraction. Each detected ROI is passed
from a five-level SWT as the optimum results are achieved with
a two-level DWT having six coefficients (approximation, (a,), hor-
izantal, (hy), vertical, (vy), diagonal, (d), approximation; (ap)
and the mean of (hy,vy,dy)). To generate six coefficients (wy, ws,
W3, Wy, Ws, Cs5) in SWT as well, the decomposition should contain five
levels. Moreover, according to some previous studies in the literature
[10] a five-level SWT performs better performance.
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Fig. 1. The flow chart of LSRG-SWT method.

Each ROI is represented both with its own and SWT coeffi-
cients' shape and gray level-based feature matrices. 1st classifica-
tion determines whether the ROI is mass or non-mass and the 2nd
classification determines whether the mass is benign or malig-
nant, which provides the breast cancer diagnosis. The software is
developed with MATLAB Version 7.6 and the feature matrices are
given to the SVM using WEKA 3.7.1.

2.1. Enhancement using homomorphic filtering

For correct segmentation and diagnosis mammogram contrast
enhancement is implemented using homomorphic filtering,,
which provides a good deal of control over the components of
illumination and reflectance. This control requires the specifica-
tion of a filter function H(u,v) that affects the low and high
frequency components of Fourier transform differently. An image
f(x,y) can be expressed as the product of illumination i(x,y) and
reflectance r(x,y) components [11]:

f.y)=ixyrx,y) (1)
and we define:

z(x,y) = Inf(x,y) = Ini(x,y) + Inr(x, y), 2
Z(u,v)=Fiu,v) + F(u,v) 3)

where Z(u,v), Fi(u,v) and F;(u,v) demonstrate the Fourier trans-
forms of z(x,y), In i(x,y) and In r(x, y) respectively. If it is processed
by means of a H(u, v) filter function, S(u, v) is yielded:

S(u,v)=H(u,v)Z(u,v) = H(u, v)Fi(u,v) + H(u, v)Fr(u,v) (@)

so s(x,y) is the inverse Fourier transform of S(u,v) and can be
expressed in the form:

SxY)=1'xy)+1'(X.y) 6))
finally, the desired enhanced image is obtained as seen in Eq. (6).

g(x,y) = &) = "0V 5 ") = g (x, y)rp(x, y) (6)
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in this filtering, the purpose is to separate the illumination and
reflectance components in the form shown in Eq. (3). The homo-
morphic filter function H(u,v) can then operate on these compo-
nents separately as indicated in Eq. (4). H(u,v) can be shown as:

H(u,v) = (rp—y)[1-e~ P/ 4y )

where Dy is a specified distance from the origin of the transform
and D(u,v) is the distance from point (u,v) to the center of the
frequency rectangle. Constant ¢ controls the sharpness of the filter
function slope as it is transmitted between the previously defined
values 0.5 and 2 of the parameters y; (low) and yy (high)
respectively. A brief of homomorphic filtering process and an
enhanced mammogram are given in Figs. 2 and 3 respectively.
Fig. 3(a) represents a dense mammogram, where it is hard to
distinguish the marked masses from the surrounding tissue,
causing false negative diagnosis. After the homomorphic filtering
application, the suspicious regions having high attenuation prop-
erties and low local contrast gains more detectability.

2.2. LSRG segmentation method

Segmentation is an essential process in any image analysis
study where an image is taken as input and some detailed
description of the scene or object is used for output. It basically
divides the spatial domain pixels into meaningful non-overlap-
ping, constituent regions that are homogeneous with respect to
some characteristics. Basic segmentation technique divides the
image I into n non-overlapping regions represented by R; (i=
1,2,3,...,n) satisfying the properties below.

a) U'_,Ri=1

b) RiﬂRj = d)

¢) H(R;) = TRUE

d) H(R;UR;) =FALSE if R; and R; are adjacent

H(R) represents the homogeneity criterion based on feature values
that are established for the segmentation purpose over the region R.
Property (a) ensures that every pixel in the image belongs to one of
the non-overlapping sub-regions. The second property (b) guarantees

ﬂhy)l:bEl:b‘ DFT |q| Hiu,») |l=i| (OFT)-! |:bl:bg(x,y)

z(x.y) Z(uy) S{u,v) s(x,y)

Fig. 2. Homomorphic filtering.

that one pixel belongs to only one region in an image. The third
property (c) ensures that the region satisfies the homogeneity criterion
defined by the user. Finally the fourth property (d) ensures that the
maximality of each region is satisfied.

In this study we propose a new growing algorithm called Local
Seed Region Growing (LSRG). It depends on the traditional
similarity-based Seed Region Growing (SRG) segmentation algo-
rithm that partitions an image directly into regions via some
similarity measurements, without any search for boundaries or
thresholds. The advantages, which differ LSRG from seed region
growing, are the determination of similarity criterion and seed
selection that are carried out according to both global and local
conditions (neighbourhood of size 3 x3). The steps of the
improved LSRG algorithm, which divides the image I into n R;
regions for i=1,...,n are listed below.

(1) Apply Seed Criterion (SeCr) to all pixels in image I and find the
seeds belonging to the regions demonstrated as Ri(s) where s
are the coordinates of the seed.

SeCr = (I(x,y)—M;)>max(Th,, S) and
(I(X, y)_MN(x,y) Zmax(ThN(x,y)a sN(x,y))

I(x,y) is the current pixel specified as a seed while M;, Th; and

S; represent the mean, threshold and standard deviation of the

entire image I respectively. Mywxy), Thyxy) and Sy, are the

mean, threshold and standard deviation of the neighbourhood

(N(x,y)) of this pixel respectively.

Start the growing process for i=1 to n for all seeds.

a) Constitute the set labeled as ‘last’ which demonstrates the
coordinates of the pixels joined last to the related region
and compute the mean (M;) of the seed and these pixels.

M, = Ri(S) + R(last)

last + 1

2

—

b

-

Determine all neighbours (N(last)) of the pixels in the set
‘last’ and compute the mean (M;) of each jth pixel in
Nj(last) and M(last) (the mean of the set ‘last’) respectively.
Find the appropriate neighbours to join to ith region using
the Similarity Criterion (SiCr).

MZ _ M,,,S[Jr;\lj(last)

SiCr = M, —Nj(last) | SSN(})

Fig. 3. (A) Dense mammogram (raw data) and (B) enhanced mammogram by using homomorphic filtering.
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where Sy(j) is the standard deviation of the neighbours
of jth pixel.

¢) If SiCr is TRUE, grow the ith region by joining the jth pixel
to it.

RI/ = R,‘UNj(laSt)

d) Go to step (2) until all seeds are grown.
(3) In LSRG algorithm the tested thresholds are listed in Table 1.

Table 1
The thresholds and definitions used in LSRG algorithm.

Thresholds Definition

Thr1 Gray level values of 100, 128 and 200 that represent different gray
color tones. The values close to 255, correspond to brighter gray
color tones

Thr2 (max. gray level of the mammogram+mean of the mammogram)/
2

Thr3 The mean of the pixels that are larger than the mammogram
mean

Thr4 The mean of the pixels that are larger than 100

Thr5 The mean of the pixels that are larger than 128

Thr6 (max. gray level of the mammogram+Thr3)/2

Thr7 (max. gray level of the mammogram+Thr4)/2

Thr8 (max. gray level of the mammogram+Thr5)/2

Thr9 (mean of the mammogram-+standart deviation of the
mammogram)/2

In this study, Thr6 is preferred as it gives the maximum
performance in LSRG algorithm. According to the obtained results,
191 non-masses and 78 masses (all of the true positives) are
detected with Thr6. The result which can also considered to be a
satisfying detection is obtained with Thr7 (182 non-masses and 71
masses). If the threshold value gets larger, the number of non-
masses (FPs) decreases but also the number of detected masses
(TPs) might decrease. Fig. 4a and c represents two enhanced
mammograms while Fig. 4b and d represents the suspicious
regions detected by LSRG algorithm that could be masses.

2.3. Wavelet transform

The signal is decomposed into various scales at different levels of
resolution after wavelet transform and by dilating the mother wavelet
multiresolution analysis is provided. A one dimensional signal f(x)e
[*(R) at 2’ resolution is orthogonal to the signal belonging to V.,
subspace [12,13]. W5f(x), W?jl f(x), W5 f(x) and W‘; f(x) represent
f(x) signal's approximation, horizontal detail, vertical detail, and
diagonal detail respectively. The approximation W’z*,“ f(x) at resolution
21 carries more information than W% f(x) at resolution 2. ¢(x) And
w(x) demonstrate the scaling and wavelet functions respectively which
satisfy ¢, =2p(2'x) and y,; = 2y (2’x). 0,; has an orthogonal base
of {2’1/2y/21(x—2’1k)k , and V.; has an orthogonal base of 27/ 21,/2,-
x=27k)ez.

Fig. 4. (A and C) Enhanced mammograms. (B and D) ROIs detected by LSRG method.
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The original signal f(x) at resolution 2 has approximation and
detail components that are characterized as follows:

W3R, _, = ((f(0), 0 (0-27K))), ., ®)
WS, _, = ((f(0.wy(0-27h)}, ., ©

where h is a low-pass and g is a high-pass filter satisfying
h(k) = (p_1(x), p(x—k)) and g(k) = (w_; (%), w(x=k)). f(x) At resolution

2 can also be demonstrated by the mirror filters h(k) = h(—k) and
gk)y=g(-k) forj=0,-1,-2,....

Wi f(x)= _z_ h@x—kyWf (k) (10
Wi fe = ¥ g@x-kWyfk an

= —o00

2.4. Spherical Wavelet Transform

Wavelets are no longer optimal in the analysis of data contain-
ing anisotropic features. This has started the development of
different multiscale decompositions such as the ridgelet, spherical
and curvelet transforms [14-16]. Firstly Starck et al. [16] have
demonstrated that spherical transforms can be useful for detection
and discrimination of non Gaussianity in astronomical images.
The full-sky data is mapped to a sphere to implement a curvelet
transform on the sphere. The goal of this paper is to implement a
medical image processing study based on Spherical Wavelet
Transform using the advantage of SWT complying well with
spherical shapes. Multi-resolution analysis (MRA) of L,(5%), where
$? is the unit disc, is S? = {(x,y)eR? : x2 + y2<1}. Accordingly the
associated Legendre functions are;

dn+m
PI™M(t) = (1-t2)™/? St 2=1)" for n>m (12)
2(n+ m)!
(m) p(m)y _

Py, Py = ST 1(n_m)!énp for n>m, p>m (13)

the local surface coordinates are introduced in S? as follows:
sin® cos ¢

x=|sin® sing |eS? where 0€[0, z], pe[—x, 7] (14)
cos 6

in these local coordinates the scalar product is expressed as,
¢.8)= [ [ je.pse.psinosas (15)

spherical harmonics represent the angular portion of a set of
Laplace's equation solutions. Laplace's spherical harmonics set,
which has the equation below, forms an orthogonal system in
spherical coordinates [13].

- 204 1y(I- .
Y! (9,¢):,/(4+(1%P, (cosg)ei™ (16)

in Y'(0, p) spherical harmonics #and ¢ represent spherical polar
angles while | and m indicate the level and the order respectively.
P]"denotes the Legendre polynomials and equals 1, x, (1/2)(3x?-1),
(x/2)(5x>-3),(1/8)(35x*~30x? 4 3) for 1=0,1,2,3,4 respectively.
As the reconstruction of an image from its wavelet coefficients

I={wy,...,wj, ¢} is straightforward and Eq. (17) can be written as
follows:
J
Co(0, ) = ¢j(0, ) + '21 w;(6, ¢) 7
j=

also we can write the equation of cy(8, ¢) = ¢1(6, ¢) x f(0, $). In this
study we wuse Shannon scaling function (¢,), which is

demonstrated by Eq. (19) [17]. Eq. (18) is the basic form of scaling
functions with I cut-off frequency and ¢.(l, 0) spherical harmonic
coefficients.

I=lIc
209 =00 = T il 0Yio(0.9) (18)
min[2’,M-1] 2 1
S N () (19)

other scaling functions with increasing scales are obtained respec-
tively by using ¢;,; = #0(279"Vx) until the desired scale is reached.
Wavelet coefficients are the difference between two consecutive
resolutions, wj,1(0, @) = ¢;j(0, )—Cj;1(0, ), which corresponds the
following specific choice for y.:

P, m) = ¢ (I, m)—ge(l, m) (20)
2J Pl J

multi-resolution sequence above can also be obtained recursively
by a low pass filter h; for each scale j by

hy(l, m) = 21+ ST ik m)
t/‘y]_c(l ,m) if 1 ;
2 < 5%
W;( m) 2 (21)
0 otherwise

it is then easily shown that ¢;; derives from ¢; by convolution
with h Ciy1 =Gj X h In the same way a high pass filter can be
derlved with y, wavelet function at each scale j and w;; =¢; x g;.

gl.m)= 21+ 178k m
1 if 1> 55
=it (22)
@c(Lm)

2

as seen in the flow chart of SWT algorithm (Fig. 5), the aim is to
obtain all coefficients (wq,w,, w3, W4, ws,c5) of the transform
including the wavelet and scaling coefficients.

2.5. SVM

Support Vector Machine (SVM), introduced by Vapnik in 1995 [18],
is a method to estimate the data classification function [19]. The basic
idea of an SVM is to construct a hyperplane as the decision surface in
such a way that the margin of separation between positive and
negative examples is maximized [20]. A classification task usually
involves separating data into training and test sets. Each instance in
the training set contains one target value and several attributes. The
goal of the SVM is to produce a model (based on the training data) that
can predict the target values of test data even the attributes are given
only. An SVM uses a kernel function, in which the nonlinear mapping
is implicitly embedded. In Covers theorem, a function can be
considered as a kernel provided that it satisfies Mercer's conditions
[21]. The following relation should be maximized to optimize the SVM
classifier boundary in a given training set of instance-label pairs

*;,y), i=1,..., where x;eR" and ye{1, -1}"
1]
Lc)= Z G5 ‘21 YyjciciKx;,x;), 0<¢;<P (23)
i=1 1,] =
while
! N ;
'21 yici=0, w= '21 CyiXi,  Clyi(w'x; +b)-1+&]1=0 (24)
1= 1=

where P is a user-specified positive parameter to control the tradeoff
between SVM complexity and the number of non-separable points. |
Shows the number of samples and K(x;, x;) is the SVM kernel. Here a
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solution to c=(cq,Cy,...,C;) is obtained, where ¢; is a Lagrange
coefficient. The slack variables ¢; are used to relax the constraints of
the canonical hyperplane equation. In a typical SVM the kernel
function plays an important role in mapping the input vector implicitly
into a high-dimensional feature space, in which better separability can
be achieved.

3. Experimental work
3.1. Image dataset

In the present study two different databases are used in order
to validate our methodology. 60 Images have been acquired from

30 patients from the Radiology Department of the Faculty of
Medicine Hospital of Istanbul University, Turkey. There are 78

Obftain scaling and
wavelet ﬁmctions

and high pass
fihm

[ Calculate the low

Find ¢; coefﬁmenbe ]

' ™
Find w; wavelet
coefficients
A ‘ /
Obtain the
W ey Wy,
coefficient set
. S

Fig. 5. Flow chart of the SWT method.
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masses in these 60 images, among which 35 are malignant and 43
are benign. No masses are found in 6 mammograms. Mammo-
grams have also been taken from the free MIAS, which comprises
the second database, and contains 25 malignant and 35 benign
masses. As known, the final diagnosis of a breast mass is made by
biopsy tests in medical centers. Therefore the masses (abnormal
tissue) have been marked and classified as benign or malignant
(Fig. 6) by expert radiologists from the Radiology Department
according to the biopsy results. In the hospital GIOTTO IMAGE SDL/
W, which is a modern mammography system for diagnostic and
screening examinations, is used. It utilizes the latest technologies:
the 2nd generation amorphous selenium (A-Se) digital detector of
24 x 30 cm and a special tungsten anode x-ray tube for patient
dose reduction with direct energy conversion (direct conversion of
the x-photons into electric charges). The mammogram set has
been selected from various patients at different ages to make the
images invariant to contrast.

3.2. Feature extraction

With appropriate feature extraction, relevant information of input
data can be used to perform the desired task instead of using full size
input [21]. In this study we extract some features related to mass size,
geometrical shape and boundary contour from SWT coefficients and
raw ROIs. The preferred features related with size are as follows: Area
is the actual scalar number of pixels in the region [22]; Centroid is the
center of the region; BoundingBox is the smallest rectangle containing
the region; Filled Area is the number of pixels in filled region and
Equiv Diameter (/4 x Area/r) is the diameter of a circle with the
same area as the region. The features related with geometrical shape
are as follows. Euler Number is the number of objects in the region
minus the number of holes in those objects and Extrema is the
extremal points in the region. The rows of the matrix contain the
x- and y-coordinates of the points. Convex Hull is the smallest convex
polygon that can contain the region. Solidity is the proportion of the
pixels in the region that are also in the convex hull. The features
related with boundary are as follows. Major Axis Length is the length
(in pixels) of the major axis of the ellipse that has the same second-
moment as the region while Minor Axis Length is the length (in pixels)
of the minor axis of the ellipse that has the same second-moment as
the region. Eccentricity is the eccentricity of the ellipse that has the
same second-moment as the region and it is the ratio of the distance
between the foci of the ellipse and its major axis length. Orientation
means the angle between the x-axis and the major axis of the ellipse

Fig. 6. Mammograms from the L.U. database with annotated masses: the first and second mammograms have malignant masses and the third one has benign masses.



P. Gorgel et al. / Computers in Biology and Medicine 43 (2013) 765-774 771

that has the same second-moment as the region. Extent represents the
proportion of the pixels in the bounding box that are also in the
region. We also define and extract two further features: boundary
based Mean Center-Border Distance representing the similarity
between the ROI and a typical circle; and shape based Symmetry.
All features mentioned above are calculated to provide feature
matrices for each ROL Those matrices are used as input vectors to
the supervised learning system SVM.

3.3. Classification of the detected ROIs

A classification system results as false positive (FP) if the
system labels a negative point as positive, false negative (FN) if
the system labels a positive point as negative, true positive (TP)
and true negative (TN) if the system correctly predicts the label
respectively [23]. In this study, diagnosis of the breast ROIs
consists of two classifications. The 1st classification helps to
determine whether the ROI is a mass (TP) or non-mass (FP). This
classification aims to reduce the non-mass number which can
cause incorrect diagnosis. The 2nd classification, which is more
significant, distinguishes the masses as benign (FP) or malignant (TP).
Masses existing in breast tissue might have different shape, margin,
orientation, lesion boundary, echogenic pattern and vascularity.
Malignant masses leading to breast cancer disperse into the normal
breast tissue, have irregular boundary and sharp corners like stars,
while benign masses, which do not prevent the survival, have
smooth, distinct and regular margin (Fig. 7). Radiologists sometimes
make false negative diagnosis (which may cause mortality) by
missing the masses due to noise and contrast inadequacy or they
make false positive diagnosis (which may cause redundant biopsies)
by assuming the non-masses were masses due to density and shape
similarity.

In this study the 1st and 2nd classification steps are carried out
using an SVM classifier. The feature extraction process is applied to
both the raw ROIs and their SWT coefficients (Wq, w,, W3, Wy, Ws, Cs)
to obtain the comprehensive feature matrices. K-fold cross validation,
in which whole data are randomly divided into k mutually exclusive
and approximately equal sized subsets, is used for the LU. database to
separate the test and training data. The classification algorithm is
trained and tested k times [24,25]. Different k values listed in Table 5
are used in the trials conducted to reach optimum accuracy. Further-
more to produce more objective results via external validation, the
MIAS database is used as the test set and L.U. database is used as the
training set.

3.4. Performance metrics

Receiver operating characteristic (ROC) analysis, which is
applied extensively to diagnostic systems in clinical medicine, is
based on statistical decision theory and developed in the context
of electronic signal detection. ROC curve is a plot of the classifier's
true positive diagnosis rate versus its false positive diagnosis rate [23].
In this study we use ROC curves to compare the performance of the
coefficient sets and also calculate some well-known image processing
performance metrics, which are as follows.

The sensitivity is defined as the ratio between the number of
true positive predictions and the number of regions in the test set.
It is defined as follows:

TP

Sensitivity = PN

x 100% (25)

the specificity is defined as the ratio between the number of false
positive predictions and the number of regions in the test set. It is

Fig. 7. Some ROIs detected by LSRG algorithm, the top line: malignant masses, the middle line: benign masses and the bottom line: non-masses.
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defined as follows:

o TN )
Specificity = aNTP) x 100% (26)
the overall accuracy is the ratio between the total number of
correctly classified regions and the test set size (total number of

regions). It is defined as follows:
Accuracy = (%) x 100% (27)

where Ny is the number of correctly classified regions during the
test run and N is the total number of test set. False positive fraction
(FPF) gives the numbers of FPs per case (mammogram) while true
positive fraction (TPF) gives the true positive detection rate
according to Eq. (28). Sensitivity, specificity and accuracy define
the performance of the 1st and 2nd classifications. On the other
hand FPF and TPF define the performance of the proposed LSRG
algorithm.

FP
FPF= Total case number
TPF = l (28)
~ TP +FN
4. Results

To evaluate the entire LSRG-SWT system performance, the
detection rate (TPF) of LSRG mass detection algorithm is firstly
measured as 1 (78/(78+0)) according to Eq. (28). That is, LSRG is
able to detect all benign and malignant masses in the mammo-
grams. However the total number of detected masses is obtained
as 269 containing 191 non-masses (FPs) and 78 masses (TPs) for
the L.U. database. Since there are 60 cases (mammograms) in
image data set, the FPF is 3.2 according to Eq. (28). The 1st
classification, which distinguishes the detected 269 ROIs as either
mass or non-mass, is implemented to reduce the FPF value as it
causes false positive diagnosis. This classification achieves 96%
accuracy and the number of non-masses (FPs) is reduced to 3
(Table 3) and FPF is decreased to 0.1. The confusion matrix
and some well-known performance metrics related to the 1st
classification are listed in Tables 2 and 3. On the other hand LSRG
algorithm produces 94% accuracy for the MIAS database in mass/
non-mass classification. Kappa statistics in Table 3 is typically an
assessment, for which two or more raters examining the same
data specify the degree of agreement in assigning data to cate-
gories. For medical statistics, the raters are radiologists that
analyze an x-ray and computers that analyze the same x-ray for
diagnosis [26,27].

The purpose of 2nd classification is construction of a system
that could help radiologists for an accurate diagnosis by

Table 2
Confusion matrix obtained with 1st classification
using the L.U. database.

Mass Non-mass
69 (TP) 9 (FN)
3 (FP) 188 (TN)

Table 3
Performance metrics of 1st classification using the L.U. database.

distinguishing the masses as either malignant (TP) or benign (FP).
For the 2nd classification we began with the I.U. database and have
made several trials to measure the change of the performance
depending on using only ROI's own features and using its various
SWT coefficients' features. The performance is unfortunately 75%
when using ROI's own features without SWT. The accuracy
increases to 91.03% with additional features of six SWT coeffi-
cients. The feature matrices, which include all coefficients, are of
size 17 x 7 due to 17 features for each of the 6 coefficient sets and
one for the ROI's own matrix. In the trials, the 4th and 5th level
coefficients' (last scale coefficients) features, which are more
meaningful, produce higher classification accuracy of 93.59%.
Table 4 represents the confusion matrix of optimum performance.

When only wavelet coefficient (wq,w,, w3, Wy, ws) features
are added to ROI's own feature matrix, the accuracy is 84.62%.
The performance is 87.18% when approximation coefficient (cs)
features are added. On the other hand the results obtained by
using Discrete Wavelet Transform (DWT), which achieves its
highest accuracy of 83.21%, are listed in Table 5 with contributed
coefficient set features. To calculate the performance of this entire
breast cancer diagnosis system with the L.U. database, 2nd classi-
fication results are multiplied with the 1st classification result
(96%) one by one to represent the more realistic classification
results (Table 5).

As seen in Table 5, optimum LSRG-SWT entire system perfor-
mance represents 97% sensitivity, 91% specificity and 90% classi-
fication accuracy according to Egs. (25)-(27) with the optimal
parameters. Fig. 8 points out the performance analysis of the
coefficient sets, which give the highest two performances with
SWT and DWT methods and ROI's own feature matrix, with ROC
curves.

To implement external validation, the MIAS database is used as
the test set and the LU. database is used as the training set. In the
trials, the last scale coefficient features which are more mean-
ingful, produce higher classification accuracy of 91.67% with SWT.
On the other hand Discrete Wavelet Transform (DWT), which
achieves its best accuracy of 80%, is also applied to the same
training and test set to present the comparison between SWT
and DWT methods. Further results are listed in Table 6 with
contributed coefficient set features. To calculate the performance
of the entire breast cancer diagnosis system, 2nd classification
results are multiplied with the 1st classification result (94%) one
by one to represent the more realistic results using the MIAS
database (Table 6).

5. Conclusion

Breast cancer is among the most prevalent cancer types in the
world if it can be diagnosed early [25]. Classification systems used

Table 4
Confusion matrix of 2nd classification using the 1.U.
database.
Malignant Benign
34 (TP) 1 (FN)
4 (FP) 39 (TN)

TP rate FP rate Precision Recall F-measure ROC area

Kappa statistics

Mean absolute error Root mean squared error Relative absolute error (%)

0.955 0.086 0.955 0.955 0.955 0.971 0.889

0.062 0.205 14.93
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Table 5

The comparative test results of the proposed LSRG-SWT method for the LU. database: Lsc, Ac, Appc, Wvc, Roi and Appc&MWvc represent Last Scale Coefficients, All
Coefficients, Approximation Coefficients, Wavelet Coefficients, ROI's own matrix and Approximation Coefficients with the mean of the Wavelet Coefficients respectively.

These sets are fed into either SWT or DWT blocks.

Method Coefficient set k Value of cross validation Sensitivity (%) Specificity (%) Accuracy of 2nd classification (%) Accuracy of the entire system (%)

SWT Lsc 8 97 91
SWT Ac 9 92 90
SWT Appc 4 89 86
SWT Wvc 8 86 83
- Roi 9 68 81
DWT Appc&MWvc 7 78 88
DWT Ac 5 77 81
DWT Appc 10 83 79
DWT Wvc 6 77 79

93.59 90
91.03 87
87.18 84
84.62 81
74.96 72
83.21 80
79.59 76
80.77 78
78.21 75
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Fig. 8. Performance analysis for the LU database.
Table 6

The comparative test results of the proposed LSRG-SWT method using the LU.
database for the training set and the MIAS database for the test set: Lsc, Ac, Appc,
Wvc, Roi and Appc&MWvc represent Last Scale Coefficients, All Coefficients,
Approximation Coefficients, Wavelet Coefficients, ROI's own matrix and Approx-
imation Coefficients with the mean of the Wavelet Coefficients respectively. These
sets are fed into either SWT or DWT blocks..

Method Coefficient Sensitivity Specificity Accuracy of Accuracy of
set (%) (%) 2nd the entire

classification system (%)
(%)

SWT Lsc 96 89 91.67 86.17

SWT Ac 96 86 90.00 84.60

SWT Appc 92 83 86.67 81.47

SWT Wvc 88 77 81.67 76.77

- Roi 76 74 75.00 70.50

DWT Appc&MWvc 84 77 80.00 75.20

DWT Ac 80 74 76.67 72.07

DWT Appc 80 77 78.33 73.63

DWT Wvc 76 74 75.00 70.50

in medical decision provide medical data to be examined in
shorter time and more detailed. The research presented in this
article aims to decrease the mortality rate related to breast cancer
by reducing the number of malignant masses that radiologists
would not notice using the current imaging technologies. It is also
desirable to decrease the number of requested biopsy tests due to
false positive detection. In this work, we develop a hybrid scheme
consisting of homomorphic filtering, LSRG and SWT methods and
denote it as LSRG-SWT system that segments the ROIs, detects the
masses and classifies them. The satisfying LSRG detection results
are 96% and 94% in the L.U. and the MIAS databases respectively.
Spherical Wavelet Transform is applied to the ROIs, along
with shape, boundary and gray level-based feature extraction. This

multi-resolution decomposition study is efficient for solving the real-
world problems related to spherical shapes like breast masses as
spherical harmonics and equations associated with sphere are used.
As SWT fits the geometric structure of the spherical breast masses, it
provides optimum multiresolution and produces malignant/benign
classification accuracy of 93.59% with the LU. database using k-fold
cross validation. On the other hand the accuracy reduces to 91.67%
with external validation when the MIAS database is used for testing
and LU. database is used for training. This study also indicates the
superiority of the last scale coefficients (4th and 5th level coefficients
- w4,Ws,Wws) over all coefficients. Furthermore DWT is applied to the
masses to present the superiority of SWT method over DWT.
Consequently the satisfying performance demonstrates that this
study is valuable to improve early diagnosis and reduce the number
of unnecessary biopsies.
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