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KAVRUMSAL RADYO SİSTEMLERİNDE SPEKTRUM ALGILAMA 

METODLARI 

ÖZET 

Hastanelerde uzaktan bağlantıyı sağlamak ve çok fazla miktardaki kabloları 

kaldırmanın kilit teknlojisi, kablosuz iletişim teknolojisidir. Ama kablosuz cihazların 

artması ile spektrum bant aralığı yetersiz kalıyor. Kavrumsal radyo bazlı hastaneler 

spektrum eksikliğini çözmek için literaturde tanıtılmıştır. Kavrumsal radyo yüksek 

data hız ihtiyacından oluşan spektrum eksikliğini çözmek için en etkili teknolojidir. 

Kavrumsal radyo teknolojisinde lisans sahibi olmayan kullanıcılara, lisanlı 

kullanıcının bant aralığının kullanmadığı zamanlarda kullanım imkani sunar. Lisans 

sahibi kullanıcı, bant aralığını kullanmaya başadığı anda, linaslı olmayan kullanıcı 

data göndermeyi durdurur ve lisanslı kullanıcının veri aktarımının bitmesini bekler. 

Kavrumsal radyo bazlı hastanelerde, cihazlar, baz istasyonlu iletişimde olduğu gibi 

iki kategoriye ayrılır. Birincil cihazlar, hastanede lisanslı cihazlar gibi olup, 

iletişimleri hayati öneme sahip olanlardır. İkincil cihazlar, hastanede liansı olmayan 

cihazlar gibi olup, az öneme sahiplerdir ve iletişimleri bekleye bilir. Kavrumsal 

radyoda bazlı hatanelerde en önemli parametre, spektrumun kullanılıp 

kullanılmadığına doğru karar vermesidir. Pek çok spektrum algılama metodu 

bulanmaktadır ama enerji bazlı algılama ve  kovariyans tabanlı spektrum algılama en 

ünlü metodlardır. en yüksek bölü en düşük özdeğer metodu, kovarians tabanlı 

spektrum algılama konseptinde en iyi tanınan metod dur. Enerji bazlı algılama 

metodunun performansını yükseltmek için, çift eşik konsepti tanımlanmıştır. 

Literatürde çift eşik enerji bazlı algılama metodu, enerji bazlı spektrum algılama 

metodunun performansını artırmak için sunulmuştur. Bu tezde, çift eşik konseptini en 

yüksek bölü en düşük özdeğer metoduna uygulayarak , çift eşik bazını en çok tanınan 

kovarians bazlı spektrum algılama metodunu tanıttık. Bu metod, karmaşıklığı 

yüzünden, kavrumsal radyo bazlı hastanelerde kullanılamıyor. Literatürde tanımlanan 

başka bir yöntem ise işbirlikli algılama dir ki bu yöntem, cihazların algılama 

parçalarını artırıp, kablolar kullandığı için kavrumsal radyo bazlı hastanelerde 

kullanılamaz. Biz bu tez çalışmasında, bellek konseptini tanıtıp, bu konsepti 

kullanarak iki algılama algoritma ürettik. Bellek konsepti, ikincil cihazların iletişim 

gecikmesini kullanarak, algılama performansı çok yüksek derecede artırıyor. ikincil 

cihazların iletişim gecikmesi kabul edilebilir bir parametredir. Bu algoritmalar, bellek 

bazlı çift eşik enerji algılaması ve bellek bazlı enerji algılama metodlarıdır. Bu 

metodların her biri kendine özel artıları ve eksileri vardır. 

Anahtar Kelimeler : Kavrumsal radyo, Enerji bazlı spektrum algılama, Çift eşik 

bazlı spektrum algılama, Kavrumsal radyo bazlı hastane, bellek bazlı çift eşik 

spektrum algılama, bellek bazlı enerji algılama. 
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SPECTRUM SENSING DETECTION METHODS IN COGNITIVE RADIO 

SYSTEMS 

ABSTRACT 

Wireless technology is the key technology to eliminate the dense wire ropes from 

hospitals and far access to medical devices. In order to overcome the problem of 

bandwidth scarcity, cognitive radio driven hospitals are introduced. Cognitive radio is 

the most effective technology to solve spectrum scarcity problem in contrast to high 

speed data transfer need. In cognitive radio systems, non-licensed users are permitted 

to use an idle licensed spectrum bandwidth. Whenever the license holder begin to use 

its spectrum, non-licensed user stops its communication and waits until the licensed 

user finish its communication.  In cognitive radio driven hospitals, devices are divided 

in two categories just as the one in cellular communication. Primary devices has very 

high priority and their communication is vital for the hospital and patients, so that no 

interference should be made with such devices. Secondary devices are the ones which 

has lower priority and they can wait until the primary devices do their communication 

and then, they begin to use the allocated spectrum. The most important parameter in 

cognitive radio driven hospitals is a reliable spectrum sensing method. This method 

should be a simple one to be able to implement it in the secondary devices. Among all 

the sensing methods, energy detection based spectrum sensing and covariance based 

spectrum sensing is very popular. Maximum to minimum eigen-value based spectrum 

sensing is the best known of the covariance based spectrum sensing. In order to 

improve the performance of energy detection, double threshold concept is introduced. 

Double threshold energy detection method is introduced in literature to improve 

energy detection method performance. In this thesis, we used this concept in maximum 

to minimum eigen-value based spectrum sensing to improve its performance. The 

problem with covariance based spectrum sensing is its complexity. These complex 

methods can not be used in real systems of cognitive radio driven hospitals. The other 

method to improve the sensing algorithms performance is cooperative concept. The 

main reason of wireless hospitals is eliminating complexity and dense ropes that by 

using cooperative system for the devices, again this ropes and complexity will be used 

again. We have suggested to use memory concept in energy detection based spectrum 

sensing methods. Two new algorithms are introduced with considerably better 

performance with the cost of delay in secondary communication which is bearable. 

These new methods are memory based double threshold energy detection and memory 

based energy detection with their pros and cons. 

Keywords: Cognitive radio, Energy based spectrum sensing, Double threshold Energy 

based spectrum sensing, Cognitive radio based hospitals, Memory based double 

threshold energy detection, Memory based energy detection. 
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1.  INTRODUCTION 

In these days many business fields depend on the radio spectrum usage such as narrow 

and broadband mobile telecommunications, medical researches, marine 

communications, scientific researches and emergency services. Thus radio services 

and communications are important for evolution of sience and economics which has 

made the radio spectrum an important natural resource recently. The development of 

new wireless technologies and various services has made the usage of this natural 

resource in such a high range that recently all industrial fields are using this technology 

in their production lines. Digital signal processing (DSP) is the key technology led up 

wireless communication to become such a sucessful technology. DSP arose due to 

endless efforts of leaders such as Alan Oppenheim [1], James Flangan [2], Fred Harris 

[3], Ronald Schaefer [4], James McClellen [5],[6] and many others. These pioneers 

has prepared innovative papers and books to teach how to convert analog signal 

processes to digital ones to be used in industaries. Following the Moore’s law [7] in 

semicondoctor industury had let the complex computational performance needed to 

implement DSP techniques to be practically possible. This caused to use digital 

functions implemented in silicons to be replaced with analog functions implemented 

with large discrete components and made the systems more reliable ,flexible, smaller 

and cheaper for the customer. By developing such a small and reliable components, 

many softwares and algorithms were designed and introduced to expand this 

revelotionary invention more. On the other hand using the radio spectrm as the 

physical layer for trancivering data, and demand for higher speeds of data transferring 

has caused the spectrum bands to be overused in a way that this resource has become 

an scarce one recently [8]. The key function should be addressed in wireless 

technology is the access to radio spectrum bands. Interference management and access 

control are the main duties of spectrum management, as the spectrum is allocated by 

governemental or non-governemental agencies, the capacity to manage interference 

become an important factor to increase the number of users. Allocation of spectrum is 

done by individual nation determined organizations and international agreements. 

Figure 1.1 shows the spectrum allocation for United States of America and figure 1.2 
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shows the spectrum alloation for United  Kingdom for the frequency band in entire 

nation [9]. Each color represents a service in the region. 

 

Figure 1.1 : United States of America Frequency Allocation 

 

Figure 1.2 : United Kingdom Frequency Allocation 
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Figure 1.3 shows the spectrum allocation in New Zealand country [10]. The intensity 

of services in USA and UK, frequency allocation is noticeably more than the one in 

New Zealand because they provide more services for commercial and non commercial 

organizations such as scientific researches , air traffic and defense technologies.  

 

Figure 1.3 : New Zealand Spectrum allocation 

Studies has shown that most of the allocated licensed spectrum is underutilized in 

space and time domain. These unused frequncy bands are named white spaces in this 

project. Federal Communications Commission (FCC) has reported the temporal and 

geographic variations in spectrum utilization is range from 15% to 85% [11].  

Spectrum utilization in figure 1.3 shows that the spectrum utilization is mainly is more 

intense in the frequencies below 3 GHz and it is less betwwen the frequencies between 

3-6 GHz spectrum bands.  

It is so obvious that there is a big misutilization of spectrum band even though there is 

a big scarcity of spectrum. Figure 1.4 show the spectrum utilization measurement up 

to 6 Ghz [12]. Fixed spectrum allocation policy has forced wireless service operators 

use only the spectrum allocated to them even if the other spectrum bands are not used 

at the moment. Cognitive radio (CR) technology is introduced to mitigate the scarcity 

of spectrum by using these spectrum holes.  
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Figure 1.4 : Spectrum utilization measurement up to 6 GHz 

Cognitive radio is the technology of intelligently detecting spectrum holes in a radio 

channel and using these spectrum holes by users not licensed for the spectrum band 

until the owner of spectrum begin using it again. This idea was pioneered by J. Mitola 

III [13] from software defined radio was considered to make spectrum utilization 

improved.  This technology is mainly used in cellular communications [8] and wireless 

hospitals [16]. The most important aspect in CR systems is spectrum sensing to avoid 

collision in a reasonable range.  

1.1 Cognitive Radio Technology in Cellular Networks 

There are many service providers in a country and the ones providing the wireless 

service for the population face spectrum scarcity. There are many unused spectrums 

or spectrums which are got unused by passing of the time. In cellular cognitive radio 

systems the owners of spectrum license are called as primary users and the users that 

do not hold the spectrum license able to use the spectrum holes in licensed spectrum 

are called as secondary users. Cognitive radio helps the secondary users to use primary 

users spectrum based on predetermined parameters. By using this technology in 

cellular networks, service providers could enhance their data transfer speed and 

improve their quality. 
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1.2 Cognitive Radio Based Hospitals 

It has been a long while that biomedical and e-health experts are trying to use wireless 

technologies in their field. The main purpose of this matter, instead of eliminating the 

dense wire ropes from the hospital environment, is to provide access from distance to 

the devices in the environment [16]. To meet this requirement, the number of wireless 

technology based hospitals grow so fast that after a while the problems began to 

appear. One of the most important problems was the scarcity of bandwidth. The 

bandwidth of the medical wireless communication is limited because of static 

frequency allocation which is done by governmental and non-governmental 

commissions. In order to mitigate the scarcity of the spectrum, cognitive radio driven 

hospitals (CogMed) are introduced by researchers [15]. In this kind of hospitals, 

devices are categorized as primary and secondary devices. Primary devices are the 

ones that are vital and have higher priority to have communication. Secondary devices 

are the ones which have low priority and they can wait until the frequency band get 

vacant. So that, primary devices should not be interference by other devices as their 

data are so valuable. In cognitive radio technology, the secondary users sense the 

bandwidth and in the case of vacancy, they begin communication, otherwise, they wait 

for predetermined moment and sense the frequency band again [14]. 

1.3 Spectrum Sensing 

It is an obvious right of a primary user to have an interference free communication, so 

that, secondary user should regularly sense the spectrum reliably to detect if the 

primary user is using its band or not. In IEEE 802.22 standard for instance, secondary 

users should sense the spectrum to detect wireless microphone and TV signals and in 

the case of busy status detection, it should vacate the chanel in only 2 seconds. In this 

standard, probabilit of detection is given as 90% and probability of false alarm is 

considered to be 10% [17].  

Spectrum sensing is the most crucial parameter in cognitive radio systems to prevent 

collision between primary and secondaryusers. Various spectrum sensing algorithms 

are introduced in literature with different pre reqisites, advantages and disadvantages 

compared to each other. The most important sensing algorithms are Matched filter, 

Cyclostationary feature detection, energy detection (ED) and eigen value based 

detection models.  
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1.3.1 Matched filter 

Matched filter pectrum sensing method is an optimal method for Gaussian noise 

scenarios because it maxiize the received signal to noise ratio [18]. For having an 

optimal performance, matched filter spectrum sensing method needs to have a perfect 

knowledge of the channel responses from primary to secondary user, primary user 

waveform structure and accurate synchronization at the secondary user side. User 

wave form structure includes the frame format, pulse shape and modulation type. A 

big disadvantage of this method is such knowledge is not availableto secondary users 

side and implementing such a detector is very complex and costy specially as the 

number of primary bands get increase. 

1.3.2 Cyclostationary feature detection 

Cyclostationary feature detection is based on distinguishing between modulated 

signals and noise [19]. Signals in primary users are cyclostationary with spectral 

correlation based on redundancy of periodicity of signal, but as noise is a wide sense 

stationary process with no correlation [20]. Analyzing the spectral correlation 

function, we can detect if the spectral band is idle or busy even with noise power 

uncertainty. Disadvantage of this method is long observation time, high complexity 

and knowledge of the cyclic frequency of the primary user signals.  

1.3.3 Energy detection 

Energy detection is based on collecting received signals samples after prefiltering 

which limits the noise bandwidth and normalizes the noise variance. After 

accumulating the energy of the primary signals, it compares it with a precalculated 

threshod that is calculated with mnoise variance. Advantages of this method is no need 

for any information about the primary signal charachteristics and channel information, 

easy implementation and cheap cost. Therefore, ED method is mainly adopted in 

literature [8].  

1.3.4 Eigen value based detection 

Eigen value based spectrum sensing method is presented in 2007 [22]. In this sensing 

method, the ratio of eigenvalues of covariance matrix of received signals are being 

used. The two types of eigenvalue detection are:  Maximum to minimum eigenvalue 

detection (MME) and energy to minimum eigenvalue detection (EME). In MME 

detection method , the maximum to minimum eigenvalue of the covariance matrix is 
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being compared to a threshold and being decided if the signal exists or not [23]. In 

EME detection method, the average eigenvalue which is the same as energy of the 

received signal to minimum eigenvalue is compared to a threshold [24].  

1.4 Environment Model 

In every wireless communication system, the signals are passing through a wireless 

channel with different charachteristic parameters. Modeling wireless communication 

channels with mathematical formulas is a big issue in wireless analysis but many 

researches are done and many accurate models are introduced. Nowdays, almost all 

parameters affecting a signal passing through a wireless environment is considered in 

the models such as Nakagami-m model. Nakagami-m channel model is perfectly 

showing the effects wireless channels in real environments. Environment channel 

modeling is analyzed in next section. 
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2.  CHANNEL MODELING  

The performance of wireless communication systems can be evaluated only in 

different channel conditions. The wireless channels, opposed to the predictable 

charachteristics of wired channels, are unpredictabe which makes the analysis of 

such channels more difficult. In these years, there is an exponential growth in 

wireless using technologies and services so that understanding the wireless channel 

has become more crucial for developing bandwidth efficient and high performance 

technologies. In wireless communication channels, radio waves are effected by three 

different physical phenomena propogating from the environment  from transmitter 

to reciever. These physical phenomenas are: reflection, diffraction and scattering. 

Figure 2.1 shows how these three phenomenas work. 

 

Figure 2.1 : Wireless channel effects 

When a propagating electromagnetic wave collide an object which has a very big 

dimension comparing to the wavelength of the signal, reflection phenomena accures. 

Some examples of these objects are buidings, big commercial panels and surface of 

the earth. Some times this phenomena cause the transmitting signal to reflect back to 

the transmitter and may cause to approach the reciever with some delays. When there 

are some sharp objects between the transmitter and receiver, waves that get around 
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such sharp objects bends and get a new propagating path. Scattering happen when the 

propagating wave collide an small object compared to the wavelength such as street 

signs and foliage. Scattering phenomena cause the wave form to radiate in many 

directions.These three types of channel charachteristics are called large scale fading 

which makes the propagation of a wave in wireless channels, vey complicated and not 

easily predictible process. 

Another charachteristic of the wireless chgannel is called fading. Fading is the 

variation of the signal amplitude over time and frequency. Instead of the common 

source of signal degradation which is called additive noise, fading phenomena is 

another that is known as a non-additive  signal disturbance.  

Fading phenomena was firstly modeled for  High Frequency (HF, 3 - 30 MHz), Ultra 

High Frequency (UHF, 300 - 3000 GHz), and Super High Frequency (SHF,  3 - 30 

GHz) bands in the yerars around 1950 and 1960. In the literature, currently, many 

popular wireless propogating channel models have been established for the 

frequencies between 800MHz and 2.5 GHz by extensive measurements in real fields. 

ITU-R standard is one of the channel models specialized for Single Input Single 

Output (SISO) communication systems. Various standard activities such as IEEE 802, 

3GPP/3GPP2, WINNER and METRA projects has been recently developed for 

Multiple Input Multiple Output (MIMO) also.  

Figure 2.2 is showing the fading phenomena with its subcategories. The fading 

phenomenon can be classified in two types: one is large scale fading  and the second 

is small scale fading. 

Large scale fading occurs as the waves go through a large distance like the distance 

of the order of cell size [25]. As the signal is passing through a a long distance, the 

energy of the wave gets lower called path loss. Shadowing is a median path loss 

process caused by large objects such as buildings and  vegetation. Small scale fading 

refers to rapid variation of signal levels in short distances.  

Taking a brief look at propagated signal it is seen that[26]: 

s(t) = Re{𝑠̃(t)𝑒𝑗2𝜋𝑓𝑐𝑡}                  (2.1) 

r(t) = Re{∑ 𝑐𝑛𝑒𝑗2𝜋(𝑓𝑐+𝑓𝐷,𝑛)(𝑡−𝜏𝑛)𝑁
𝑛=1  * 𝑠̃(t- τn) } = Re{𝑟̃(t)𝑒𝑗2𝜋𝑓𝑐𝑡}     (2.2) 
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Figure 2.2 : Fading phenomena classifications 

here s(t) is the transmitted signal and 𝑠̃(t) is the equivalent signal in base band. Fc is 

the carrier frequency, r(t) is the received signal after being effected by the channel and 

𝑟̃(t) is the equivalent signal in base band. τn is delay and fD,n is the Doppler effect. 

𝑟̃(t) = ∑ 𝑐𝑛𝑒𝑗2𝜋𝜑𝑛(𝑡)𝑁
𝑛=1 𝑠̃(t - τn)      (2.3) 

𝜑𝑛(𝑡) = 2π(𝑓𝐷,𝑛𝑡 − (𝑓𝑐 + 𝑓𝐷,𝑛)𝜏𝑛      (2.4) 

𝜑𝑛(𝑡) has a minus sign as fc is a large number. 

This channel is a linear and time variant channel, which can be shown as: 

𝑠̃(t)         𝑟̃(t)         (2.5) 

𝑠̃(t-τ)    r’(t) ≠ 𝑟̃(t-τ)        (2.6) 

Because of existence of 𝑐𝑛𝑒𝑗𝜑𝑛(𝑡) part. Figure 2.3 shows a baseband transmission 

channel briefly. 

 

Figure 2.3 : Baseband communication system  
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g(t,τ) = ∑ 𝑐𝑛𝑒𝑗𝜑𝑛(𝑡)𝑁
𝑛=1 δ(t- τn)                                                             (2.7) 

𝑠̃(t) = a(t) 𝑒𝑗𝜃(𝑡)        (2.8)    

r(t) = ∑ 𝑐𝑛
𝑁
𝑛=1 Re{𝑒𝑗2𝜋(𝑓𝑐+𝑓𝐷,𝑛)(𝑡−𝜏𝑛)  a(t- τn) 𝑒𝑗𝜃(𝑡−𝜏𝑛) } =       

∑ 𝑐𝑛a(t −  𝜏𝑛) 𝑁
𝑛=1 cos [2𝜋(𝑓𝑐 + 𝑓𝐷,𝑛)(𝑡 − 𝜏𝑛) + 𝜃(𝑡 − 𝜏𝑛)]  (2.9) 

𝑠(𝑡) = 𝑎(𝑡)𝑐𝑜𝑠(2𝜋𝑓𝑐𝑡 + 𝜃(𝑡))        (2.10) 

Depending on the relative extent of a multipath, frequency selectivity of a channel. 

is characterized (e.g., by  frequency-selective or frequency flat) for small-scaling 

fading. Meanwhile, depending on the  time variation in a channel due to mobile. speed 

(characterized by the Doppler spread), short- term fading can be classified as either 

fast fading or slow fading [27]. Figure 2.4 classifies the types  of fading 

channels.Figure 3.4 show these types on the signal. 

 

 

Figure 2.4 : Channel effects in wireless channels 

2.1 Large-sclae Fading 

Line of sight (LOS) environment is the channel when there is no obstacle between the 

transmitter and reciever. Satellite communication systems are LOS environments that 

are modeled with free space propagation forms. Showing the distance between the 

transmitter and reciever by d, the received power in free space environment using Friis 

equation [26] can be modeled as below: 

Let d denote the distance in meters between the transmitter and receiver. When non-

isotropic antennas are used with a transmit gain of Gt and a receive gain of Gr, the 

received power at distance d, Pr(d), is expressed by the well-known Friis equation 

[25], given as 
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Pr(d) = 
𝑃𝑡𝐺𝑡𝐺𝑟𝜆2

(4𝜋)2𝑑2𝐿
                                      (2.11) 

where Pt is the transmit power in watts, Gt is the transmit gain and Gr is the reciever 

gain of non-isotropic antennas, λ is the wavelength of radiation in meters and L is the 

system loss factor. System loss factor is completely independent of propagation 

environment and it represents the overall loss in the system hardware. In general, L is 

bigger than 1, but L cane be cosnsiderd to be equal to 1 if we assume that there is no 

loss in the system hardware. Considering the 2.1 formula, it is obviousthat the 

received power attenuates exponentially by the distance. Assuming that the system 

loss factor is equal to one,the free space path loss can be derived from Equation (2.6) 

as below: 

PLf (d)[dB] = 10log(
𝑃𝑡

𝑃𝑟
) = -10 log(

𝐺𝑡𝐺𝑟𝜆2

(4𝜋)2𝑑2)                              (2.12) 

Without considering antenna gains, the equation 2.12 reduces to the equation below: 

PLf (d)[dB] = 10log(
𝑃𝑡

𝑃𝑟
) = 20 log(

4𝜋𝑑

𝜆
)                      (2.13) 

Figure 2.5 shows the free space path loss for different antenna gains whith carrier 

frequency  equal to 1.5 GHz as the distance varies.  

 

Figure 2.5 : Free space path loss model with fc = 1.5 GHz 

Ita can be seen from figure 2.5 that the path loss is more less when the transmitter and 

receiever antenna gains are higher. By reducing the antenna gain of the reciever, free 

space path loss gets higher and even more, by reducing both receiving and 
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transmitting antennas, the pass loth gets considerably more higher. It was obvious that 

the average received signal decrease in a logarithmic manner by distance. 

More general free space path loss model can be constructed by modifying the 2.13 

formula  with a path loss exponent that varies with the environment. This path loss 

environment is caleed log distance path loss model and is formulated as below:  

PLLD(d)[dB] = PLF(d0) + 10nlog(
𝑑

𝑑0
)                  (2.14)    

Where n is the path loss exponent varied by different environments, d is the distance 

between the transmitter and the reciever and d0 is a reference distance . The path loss 

exponents is range from 2 to 6 depending on the propogation environment and shown 

in table 2.1. For the most basic environment ,free space, path loss wxponent is equal 

to 2 and in the complex invironments in urban areas obstructed with building it range 

fron 4 to 6. Full list is as below [34]:  

Table 2.1 : Path loss exponent values for different environments 

Environment                   Path loss exponent (n)   

Free space                                                                                          2 

Urban area cellular radio                                                              2.7-3.5  

Shadowed urban cellular radio                                                     3-5  

In building line of sight                                                                      1.6-1.8  

Obstructed in building                                                                           4-6  

Obstructed in factories                                                                           2-3 

The other parameter, reference distance, should be determined properly for different 

environments also. This parameter is set as 1 Km for a cellular system with a cell 

radius greater than 10 Km. For Macro cellular systems with a cell radius of 1 Km, 

reference distance is considered as 100m and in micro cellular systems with smaller 

cell radius, this parameter is considered to be 1m. 

Figure 2.6 shows the log distance path loss with different path loss exponents and 

carrier frequency equal to 1.5 GHz. 
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Figure 2.6 : Log-distance path loss model with fc = 1.5 GHz 

It is clear that the path loss increases with the path loss exponent n. Even if  the 

distance between the transmitter and receiver is equal to each other, every path may  

have different path loss since the surrounding environments may vary with the 

location of  the receiver in practice. However, all the aforementioned path loss models 

do not take  this particular situation into account. A log-normal shadowing model is 

useful when dealing  with a more realistic situation. Let Xs denote a Gaussian random 

variable with a zero mean and  a standard deviation of s [34]. Then, the log-normal 

shadowing model is given as 

PL(d)[dB] = 𝑃𝐿̅̅̅̅ (d)+X𝝈 = PLf(d0) + 10nlog(
𝑑

𝑑0
) +X𝝈     (2.15) 

This modela is some how more realistic as it considers a Gaussian random variable 

with zero meand and standrad deviation of 𝝈 as the shadowning effect.  

Figure 2.7 shows the log-normal shadowing model with path loss exponent equal to 

2, standard deviation equal to 3 dB and carrier freauency equal to 1.5 GHz in three 

different random path models. 
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Figure 2.7 : Log-normal Shadowing path loss model with fc = 1.5 GHz 

Some of more specific large scale channel models in literature are Okumara/Hata 

model, Cost-231 and Walfisch/Bernoti Model. [25],[34]: 

2.1.1   Okumara/Hata model 

Okumura model is one of the most frequently used path loss models that is obtained 

thhrough extensive computations of antenna height and coverage are experimentally 

in urban areas. This model covers the wireless communication models with frequency 

band of 500 MHz up to 1500 MHz, cell radius from 1km to 100 km and antenna heigh 

of 30 m up to 1 km.  

Okumura equation is as below: 

PLOK(d)[dB] = PLF + AMU(f,d) – GRx – GTx + GAREA    (2.16) 

where d is the distance between transmitter and the reciever, AMU(f,d) is the medium 

attenuation factor at frequency f and distance d, GRx is the reciever antenna gain, GTx 

is the transmitter antenna gain and GAREA is the  the propagation environment  gain in 

specific areas. Antenna gains are a function of height of these antennas and antenna 

patterns are not taken into account. Meanwhile, AMU(f,d) and GAREA can be referred 
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to the graphs obtained by Okumura measurements in real experiences [27].  

Hata model is only an extension of Okumura model including open, suburban and 

urban areas. 

Hata model for urban areas equation is as below: 

PLHATA,U(d)[dB] = 69.55 + 26.16 log fc -13.82loghTx – CRx +  

(44.9 - 6.55 log hTx) log d       (2.17) 

Where hTx is the height of transmitter antenna , is the carrier frequency, d is the 

distance between transmitter and reciever, CRx is the correlation coefficient of the 

receiver antenna. 

CRx can be calsulated as below in small to medium sized cell coverage areas: 

CRx = 0.8 + (1.1 log fc – 0.7)hRx – 1.56 log fc       (2.18) 

where hRx is the height of transmitter antenna.  

CRx can be calculated as below depending on the range of the carrier frequency in 

large cell size areas: 

CRx = {
8.29 (log(1.54 ℎ𝑅𝑥))2 − 1.1      𝑖𝑓 150 𝑀𝐻𝑧 ≤ 𝑓𝑐  ≤ 200 𝑀𝐻𝑧

3.2 (log(11.75 ℎ𝑅𝑥))2 − 4.97 𝑖𝑓 200 𝑀𝐻𝑧 ≤ 𝑓𝑐  ≤ 1500 𝑀𝐻𝑧
  (2.19) 

Hata model in suburban and open areas can be shown as below: 

PLHata,SU(d)[dB] = PLHata,U(d)-2(log
𝑓𝑐

28
)2 – 5.4      (2.20) 

PLHata,O(d)[dB] = PLHata,U(d) - 4.78(logfc)
2 – 18.33 log fc – 40.97    (2.21) 

Figure 2.8 represents the path loss in urban, suburban and open areas. 

2.1.2   COST 231 model 

Cost 231 is and extention of Hata envoironment model to 2 GHz [34]. This extetion 

is done by European cooperative for scientific and technocal research (EUROCOST) 

and equation isas below: 

Lurban(dB) = 46.3 + 33.9 log fc − 13.82 log (ht) − a(hr) + (44.9 − 6.55 log ht )* log d 

+CM           (2.22) 

where a(hr) can be calculated as below: 

a(hr) = (1.1 log fc -0.7) hr – (1.56 log fc -0.8)dB    for small to medium cities  
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Figure 2.8 : Hata path loss model with fc = 1.5 GHz 

          (2.23) 

a(hr) = (3.2 log 11.75 hr)
2 – 4.97 dB  for large cities   (2.24) 

CM  can be determined as below: 

CM = 0  dB     for small to medium cities  (2.25) 

CM = 3 dB     for large cities   (2.26) 

This model is caleed COST 231 in literature and has some restriction for carrier 

frequncy, distance and heght of transmitter and reciever. Carrier frequency in this 

model should be between 1.5 GHz and 2 GHz, transmitter height be between 30 and 

200 meters, reciever height be between 30 and 200 meters and distance between 1 and 

20 Km. 

2.1.3 Walfisch/Bernoti model 

COST 231 does not consider the impact of diffraction [34].Walfisch and Bernoti has 

introduced a model that predict average signal level at the street by using diffraction. 
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In this environment model, path loss is considered to be product of three factors as 

below: 

L=P0Q
2P1         (2.27) 

where P0 is the omnidirectional antennas free space path loss, Q2 is the signal power 

reduction because of buildings that block the receiver at street level, and P1 is the 

signal power loss because of diffraction from the rooftop to the street level.  

2.2   Small Scale Fading 

small-scale fading is often referred to as fading in short.  Fading is the rapid variation 

of the received signal level in the short term as the user terminal  moves a short 

distance. It is due to the effect of multiple signal paths, which cause interference  when 

they arrive subsequently in the receive antenna with varying phases. In other  words, 

the variation of the received signal level depends on the relationships of the relative  

phases among the number of signals reflected from the local scatters. Furthermore, 

each of the  multiple signal paths may undergo changes that depend on the speeds of 

the mobile station and  surrounding objects. In summary, small-scale fading is 

attributed to multi-path propagation,  mobile speed, speed of surrounding objects, and 

transmission bandwidth of signal. 

2.2.1   Flat fading 

Lets assume that τMax is maximum difference between delays of signals and  defined 

as below: 

τMax = Max{ τi – τj }      for every i,j      (2.28) 

Flat fading can be shown in an other way also: 

If Bc >> Bs , then the channel is flat fading channel. 

Bc is coherence bandwidth and Bc = 
1

𝜏𝑀𝑎𝑥
 and Bs is the signal bandwidth and is defined 

as Bs = 
1

𝑇𝑠
 where Ts is symbol period. 

Now we consider thet τi ≅ τj for every i and j  

So τMax = 0 and in all time periods. We define τi ≅ τj ≅ 𝜏̂ 

So from equation (3.5) we have: 

g(t,τ) = ∑ 𝑐𝑛𝑒𝑗𝜑𝑛(𝑡)𝑁
𝑛=1 δ(t- τn) = g(t) δ(t- τn)     (2.29) 
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by taking furrier transform from both sides : 

Fτ{g(t,τ)} = ∫ 𝑔(𝑡, τ)
+∞

−∞
𝑒−𝑗2𝜋𝑓𝜏 dτ = ∫ g(t) δ(t −  τ𝑛)

+∞

−∞
𝑒−𝑗2𝜋𝑓𝜏 dτ = g(t) 𝑒−𝑗2𝜋𝑓𝜏̂ = 

T(t,f)          (2.30) 

|T(t,f)| = |g(t)| which means that for every frequency, in a time like t=t1 channel makes 

the same effect on the signal. 

The baseband equivalent of the received signal from equation (2.3) is as below: 

𝑟̃(t) = ∑ 𝑐𝑛𝑒𝑗𝜑𝑛(𝑡)𝑁
𝑛=1 𝑠̃(t - τn)= ∑ 𝑐𝑛𝑒𝑗𝜑𝑛(𝑡)𝑁

𝑛=1 𝑠̃(t - 𝜏̂) = g(t) 𝑠̃(t - 𝜏̂) (2.31) 

This demonstrates that when the fading is flat , the signal is being multiplied by a 

fading factor named g(t) which is define as below: 

g(t) = ∑ 𝑐𝑛𝑒𝑗𝜑𝑛(𝑡)𝑁
𝑛=1  = ∑ 𝑐𝑛𝑐𝑜𝑠𝜑𝑛(𝑡)𝑁

𝑛=1  + j ∑ 𝑐𝑛𝑠𝑖𝑛𝜑𝑛(𝑡)𝑁
𝑛=1  = gI(t) + jgQ(t) 

(2.32) 

the fading variables envelope and phase distribution as: 

g(t) = gI(t) + j gQ(t) = ρ(t)𝑒𝑗𝜑(𝑡)     (2.33) 

ρ(t) = |g(t)| = √𝑔2
𝐼
(𝑡) +  𝑔2

𝑄
(𝑡)     (2.34) 

𝜑(𝑡) = Arctan 
𝑔𝑄(𝑡)

𝑔𝐼(𝑡)
     (2.35) 

In flat fading channels, the effect of the channel is the same for all frequency ranges 

of the signal passing through the channel. 

2.2.2   Frequency selective fading 

In a frequency selective multipath fading channel ,in a fixed time such as t=t1,  signal 

is being effected by different powers. This happens when  

τMax ≅ Ts      OR    τMax > Ts       

in other words, Bc ≤  Bs .  The effect of this fading channel is in frequency domain 

signal gets narrower and in time domain gets wider which causes inter symbol 

interference. In frequency selective channels, there are different channel effects on 

different frequencies of the signal passing through the channel. 

2.3 Well Known Fading Channels 

Nakagami-m is the best known channel fading  model with the Nakagami-m 
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distribution in celllar networks. Even though Rayleigh fading can be achieved from 

Nakagami-m fading distribution, but this distribution worth studying. Rayleigh fading 

is known for its complexity in channel charachteristics. 

2.3.1 Rayleigh fading 

In Rayleigh fading there is no line of sight route between transmitter and receiver. gI(t) 

and gQ(t) have Normal distribution with mean zero and variance 𝝈2 which is a different 

amount for each. This means that variance of Normal distribution for gI(t) is different 

than gQ(t). But we take the both variances the same which works true in practical 

expriences. 

ρ𝑔𝐼𝑔𝑄
 = 

1

2𝜋𝜎2 𝑒
−

𝑥2+𝑦2

2𝜎2      (2.36) 

And pdf of this distribution is : 

Pρ(x) =  {
𝑥

𝜎2 𝑒
−

𝑥2

2𝜎2                  𝑥≥0

0            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
     (2.37) 

φ(t) = arctan
𝑔𝑄(𝑡)

𝑔𝐼(𝑡)
       (2.38) 

φ(t) is a uniform distribution between –π and +π. 

Figure 2.9 is the scheme of probability density function (PDF) of Rayleigh distribution 

with deviations equal to 0.5, 1, 2, 3 and 4 [35]. 

Amplitude = 
𝑒

−
1
2

𝜎
     (2.39) 

E[ρ] = ∫ 𝜌𝑃𝜌(ρ)dρ = √
𝜋

2
.𝜎     (2.40) 

𝝮 = E[ρ2]= 2𝝈2     (2.41) 

Variance = E[ρ2] – E2[ρ] = (2 - 
𝜋

2
) 𝝈2     (2.42) 

2.3.2 Nakagami-m fading 

Nakagami-m fading is mostly being used for cellular communication and indoor and 

office channels. The pdf of the envelope is: 

Pρ(x) = 
2𝑚𝑚𝑥2𝑚−1

𝛤(𝑚)𝛺𝑚 𝑒−
𝑚𝑥2

𝛺            m≥
1

2
   ,   x≥0     (2.43)  
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Figure 2.9 : Rayleigh fading pdf with different deviations 

where 𝛤(𝑚) is Gamma function which is defined as below: 

𝛤(𝑚) = ∫ 𝑦𝑚−1𝑒−𝑦𝑑𝑦
∞

0
           m>0     (2.44) 

Figure 2.10 shows Nakagami-m distribution PDF with m values equal to 0.5, 1, 2 and 

4. 

Different m values makes the channel to be different known distributions. As the m 

value gets higher, channel gets more simple. 

{
m = 1   then it becomes a Rayleigh fading channel         
m → ∞ then it gets similar to an AWGN fading channel

  (2.46) 

and showing the channel with Nakagami-m distribution has some advantages such as: 

1. There is Bessel function which makes the analysis more easy 

2. Has a very good approach to Rician channel which is the same as Rayleigh 

channel except there is a route of line of sight with the transmitter. 

Nakagami-m is the best channel model used in indoor and outdoor environments.  
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Figure 2.10 : Nakahami-m distribution PDF with different m values 
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3.  SYSTEM MODEL AND SPECTRUM SENSING ALGORITHMS 

Let rd(t) be the continious signal that is received to the detector in the secondary user. 

This signal can be shown as follow: 

rd(t) = sd(t) + ηd(t)         (3.1) 

where sd(t) is the primary user’s signal and ηd(t) be the noise. Noise is assumed to be 

a stationary process which satisfies the equations below: 

 E(ηd(t)) = 0          (3.2) 

 E(η2
d(t)) = 𝝈η

2        (3.3) 

 E(ηd(t)ηd(t+τ)) = 0, for any τ≠0      (3.4) 

In secondary users detectors, we are intrested in in the frequencies centered in fc and 

the bandwidth be W. Detector get the samples of received signal with the sampling 

rate equal to fs which is bigger or equal to the bandwidth. 

For simplifying the notations, we use the equations below: 

x(n) = xd(nTs)         (3.5) 

s(n) = sd(nTs)         (3.6) 

η(n) = ηd(nTs)        (3.7) 

where Ts is the sampling period of the detector and equal to (fs)
-1. 

Spectrum sensing in the cognitive radio systems is a binary hypothesiscan be shown 

as follow [36]: 

H0 : The spectrum band is in idle status      (3.8) 

H1 : The spectrum band is in busy status      (3.9) 

Received signals to detector under both hypothesis is given as: 

H0 : x(n) = η(n)        (3.10)  
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H1 : x(n) = Hs(n) + η(n)       (3.11) 

where H is the effects of channel and η(n) is the is the white noise received which is 

assumed to be independent and identically distributed (iid) with mean equal to 0 and 

variance equal to 𝝈η
2

 . 

In multiple input multiple output systems, the received signal can be shown as 

below[23],[38]: 

xi(n) = ∑ ∑ ℎ𝑖𝑗𝑠𝑗(𝑛 − 𝑘) + η𝑖(𝑛)
𝑁𝑖𝑗

𝑘=0
𝑃
𝑗=1      (3.12) 

where P is the number of signals in transmitter side, hij(k) is effect of the channel wich 

is the channel response from source signal j to the antenna i  and Nij is the order of 

channel hij(k). The term h is the gain of the channel that effects the sent signal by the 

primary user is mostly modeled as Nakahami-m fading channels in cell sized and 

indoor environments. Nakagami-m fading channel can mathematically modeled 

below: 

Pϼ = 
2𝑚𝑚𝑥2𝑚−1

Γ(m)Ω𝑚  exp(- 
𝑚𝑥2

Ω
)  , m ≥ 

1

2
 , x ≥ 0     (3.13) 

Γ(m) = ∫ 𝑦𝑚−1∞

0
𝑒−𝑦𝑑𝑦                 , 𝑚 > 0     (3.14) 

where Γ(.)  is a gamma function  where Γ(1) is equal to 1. 

3.1 Energy Detetion Based Spectrum Seninge Algorithms. 

Energy detection is based on collecting received signals samples after prefiltering 

which limits the noise bandwidth and normalizes the noise variance. Afte 

accumulating these energy smaples of primary user, a comparison is being done. 

classical energy detection method and double threshold energy detection based 

spectrum sensings are the most well known spectrum sensing methods in this concept.   

3.1.1   Classical energy detection: 

An analog energy detector consists of a pre-filter, square law device and a finite time 

integrator. The output of the  integrator is the normalized received signal energy of the 

receiver or detector. The normalized received signal energy is as follow [8]: 

℮(t) = 
1

𝑁
∑ |𝑦(𝑛)|2𝑁−1

𝑛=0         (3.15) 

Number of collected samples by detector is considered to be equal to N. Samples can 

be treated as a random process as the received signals are unknown. the sample 
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transmitted signals follows an independent and identically distributed (i.i.d) random 

processes with zero mean and variance of σ𝑠
2. So that the received signal SNR in a 

channel with gain of h can be shown as α=
|ℎ|2𝜎𝑠

2

𝜎𝜂
2 . In the case that collected signals are 

large enough, using CLT, under hypothesis H0 , the probability density function (PDF) 

of ℮(t) becomes a normal distribution with mean = N𝜎𝜂
2and variance = N𝜎𝜂

4. The PDF 

of ℮(t) , under hypothesis H1 , it is a normal distribution with mean = N(1+α)𝜎𝜂
2 and 

variance = (1+2α)N𝜎𝜂
4. Considering the distributions above, the probability of false 

alarm (Pfa) and probability of detection (Pd) can be shown as[36] : 

Pfa = prob(℮(Ns)> λ|H0) = Γ(u,
λ

2
)/ Γ(u) = Q(

λ− ση
2  

√2ση
4 /𝑁

)   (3.16) 

Pd= prob(℮(Ns)> λ|H1) = Qu(√2𝛼, √λ) = Q(
λ− (|ℎ|2𝜎𝑠

2+ση
2 ) 

√2(|ℎ|2𝜎𝑠
2+ση

2 )/N
)  (3.17) 

Where Q(.) is the Q-function. In the IEEE802.22 ,Pfa is equal to 0.1 as minimum but 

generally for any Pfa we can calculate threshold based on Pfa as follow: 

λfa = 𝝈η
2 (1+ 

√2𝑄−1(𝑝𝑓𝑎) 

√𝑁
)       (3.18) 

In the case of hypothesis H1 , we can calculate the threshold based on Pd for any signal 

to noise ratio (α) as follow: 

λd = 𝝈η
2 (1+α)(1+ 

√2𝑄−1(𝑝𝑑) 

√𝑁
)       (3.19) 

In ED based spectrum sensing method the threshold calculated based on Pfa is 

compared with the received signal to detect if the primary user is using the spectrum 

allocated or not. If the energy is bigger than the found threshold, the detector concludes 

the presence of the signal and absence in other case. Algorithm 3.1 shows the sensing 

procedure of energy detector. 

Algorithm 3.1 : Energy Detection Based Spectrum Sensing Algorithm 

Input   : λ, 𝝈η 

Output  : Ri 

1: for each sensing period do 
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2: ℮(t)  Energy of the N samples 

3: if ℮(t) >  λ then 

4: Ri  H1 

5: else 

6: Ri  H0 

7: return Ri 

8: end for 

ED sensing method is a semi blind spectrum sensing method. It is called semi blind 

because for measuring the threshold, instead of the Pfa, it needs the variance of noise 

also. Measuring the exact variance of noise is not possible mainly and there could be 

some error in the calculation. Assume that ζ dB is the error accrued in noise estimation. 

θ = 10ζ/10 is the power of the error so that Pfa and Pd can be calculated as: 

Pfa = prob(T(Ns)> λ|H0) = Γ(u,
𝜃λ

2
)/ Γ(u)     (3.20) 

Pd= prob(T(Ns)> λ|H1)  = Qu(√2𝛼, 𝜃√λ)     (3.21) 

The biggest issue with ED spectrum sensing method in large cellular areas is the noise 

uncertainty. As this method, instead of Pfa, depends on the noise variance also, 

measurement error in nise effects the performance of this method. Later, the effects of 

the noise uncertainty (NU) is going to be shown by simulations also. 

A Monte-Carlo simulation model is developed in MATLAB software with i.i.d noise 

samples with Gaussian distribution and QPSK modulated random primary signals are 

used mentioned otherwise. It is assumed that the channel is stable and does not change 

during the period of sampling. To calculate the sensing threshold, only the noise 

variance and Pfa is needed for ED spectrum sensing algorithm. The probability of false 

alarm is Pfa ≤ 0.1and probability of detection is Pd > 0.9 as required by IEEE 802.22 

standard. Pfa is chosen equal to 0.1 in all of the simulations and results are avaraged 

over 104 tests.  

Figure 1 shows the performance of ED in different modulations such as BPSK, 

QPSK and 8PSK modulation types. Different modulation types is not affecting the 

performance of the detection method. This can be easiy seen from the this figure also 
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that modulation type does not effect the performance of the Energy detection based 

spectrum sensing.  

Figure 2 shows the performance of ED sensing method with different signal types. 

Signals can be sent with different shapes. In this figure, different signal shapes are 

used such as rectangular, raised cosine and root raised cosine shapes. For abtaining 

such signal shapes, filters are used before sending it. This is obvious that the signal 

type is not effecting the sensing performance also. 

 

Figure 3.1 : Energy Detection based spectrum sensing performance comparison with 

BPSK, QPSK and 8 PSK modulations. 

As mentioned earlier as the m goes to infinity the channels distribution function gets 

nearer to Gaussian channel and if the m=1, the Nakagami-m channels gets the same 

distribution function as Rayleigh fading channel. The Gaussian channel has the best 

performance and Rayleigh fading has the worst performance among Nakagami-m 

fading channels.  

There are different channel conditions in wireless channels as discussed before. Figure 

3.3 shows the performance of ED sensing in different channels. 
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Figure 3.2 : Energy Detection based spectrum sensing performance comparison with 

different signal types such as rectangular, raised cosine and root raised cosine types. 

 

Figure 3.3: Energy Detection sensing method performance of QPSK in Gaussian, 

Rayleigh and Nakagami-m fading channels with m=1, 2 and 15. 
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Figure 3.4. : Energy Detection based spectrum sensing method’s performance with 

0, 0.5, 1, 1.5 and 2dB noise uncertainty for signal passing through Gaussian channel. 

 

Figure 3.5. : Energy detection based spectrum sensing method performance with 0, 

0.5, 1, 1.5 and 2dB noise uncertainty for signal passing through Rayleigh channel. 

Figure 3.4 shows the performance of ED sensing method in Gaussian channel and 

figure 3.5 show the performance of it in Rayleigh channel, both with nthe oise 

uncertainty of 0, 0.5, 1, 1.5 and 2dBs.  
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3.1.2 Double threshold energy detection based spectrum sensing method 

Double threshold energy detection (DTED) spectrum sensing method is introduced to 

make ED sensing method more reliable. The main purpose in this method is to define 

a restricted area near to the threshold that the samples with small errors could be 

assemble in this area and do not affect the whole detection procedure. So, a restricted 

area constant (RAC) is chosen like θ to define the boundries of the restricted area as 

follow [40]. 

λ1 = (1-θ) λ        for lower boundary    (3.22) 

λ2 = (1+θ) λ   for higher boundary    (3.23) 

any value between or equal to these thresholds are not going to have any effect on the 

decision procedure. Algorith 3.2 shows the detection process of DTED method 

[36],[40]. 

Algorithm 3.2. : Double threshold energy detection based spectrum sensing method 

Input  : θ, λ, 𝝈η 

Output : Ri 

1: for each sensing period do 

2: ℮(t)  Energy of the N samples 

3: λ1 = (1-θ) λ 

4: λ2 = (1+θ) λ 

5: if ℮(t) <  λ1 then 

6: Ri  H0 

7: return Ri 

8: else if ℮(t) > λ2 

9: Ri  H1 

10: return Ri 

11: else 

12: return nothing 

13: end for 
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In this method, instead of Pfa and Pd, two new probabilities can be defined as the 

probability of the energy be between boundaries in condition of hypothesis H0 and H1 

that can be shown as follow. 

Pfa = p(E(Ns)> λ2|H0) = Γ(u,
λ2

2
)/ Γ(u)      (3.24) 

Pd= p(E(Ns)> λ2|H1)  = Qu(√2𝛼, √λ2)     (3.25) 

P0 = p(λ1<E(Ns)<λ2|H0) =  (Γ(u,
λ1

2
)/ Γ(u)) – (Γ(u,

λ2

2
)/ Γ(u))   (3.26) 

P1=p(λ1<E(Ns)<λ2|H1)=Qu(√2𝛼, √λ1)-Qu(√2𝛼, √λ2)   (3.27) 

Detection performance of DTED gets low suddenly in low SNRs. This is because the 

percent of the samples containing information for detection process in RAC region 

gets high and effects the performance [21]. 

The Monte-Carlo simulation model developed in MATLAB for this section needs the 

noise variance, Pfa and RAC as well. Like previous section, Pfa is chosen as 0.1 in the 

simulations and results are averaged over 104 tests, RACs are 0.025, 0.5, 0.75 and 

noise variances are 1 and 2 dBs.  

Figure 3.6 shows how many percent of the samples used in DTED, which are not in 

the restricted area with RAC of 0.5 in different channels. The number of usable 

samples in decision decrease as SNR decreases but then the number of samples 

increases. Although the number of samples used for detection increase but the 

performance of DTED does not get better. The reason is in low SNRs the valuable data 

that effects the performance of DTED is very near the border of original threshold in 

ED method. 

In Figure 3.7, it is shown that how many percent of valuable data is eliminated because 

of restriction gap, which could effect the performance. 

Figure 3.8 shows the effect of RAC on the percentage of usable data in DTED method 

in Gaussian channel. By increasing RAC rate, the percent of data in the restricted area 

increases.  

In figure 3.9 it is shown that how increasing the RAC effects the percent of valuable 

data eliminated because of restriction gap.  
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In figure 3.10 The performance of DTED method in different channels. In high SNRs, 

DTED method has a good performance in all channels, but as the SNR gets lower, the 

performance of DTED gets lower because of the reasons described above.  

 

Figure 3.6 : Percentage of the energy samples used to make decision using double 

threshold energy detection method with RAC=0.5 in different channels. 

 

Figure 3.7 : Percentage of the valuable energy samples eliminated using double 

threshold energy detection method with RAC=0.5 in different channels. 
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Figure 3.8  : Percentage of the energy samples used in double threshold energy 

detction method with RAC = 0.25,0.5 and 0.75 in Gaussian channel . 

 

Figure 3.9 : Percentage of the valuable energy samples eliminated using double 

threshold energy detection method with RAC=  0.25, 0.5 and 0.75in Gaussian 

channel. 
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Figure 3.10 : Double threshold energy detection method with RAC = 0.5 

performance comparison in different channels. 

 

 

Figure 3.11 : Double threshold energy detection method with RAC = 0.25, 0.5 and 

0.75 and Noise Uncertainty = 0, 1 and 2 dBs performance comparison in Gaussian 

channel. 
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In figure 3.11 , the effects of noise uncertainty on the performance of DTED method 

with RACs equal to 0.25, 0.5 and 0.75 is shown in low SNRs. In this figure the signal 

is passing through a Gaussian channel. In low SNRs, DTED is very effective to Noise 

uncertainty that makes its performance unreliable. Actually, it gets better for lower 

RACs. 

3.2 Covariance Based Spectrum Sensing 

The received signal to the reciever signal is as below: 

xi(n) = ∑ ∑ ℎ𝑖𝑗𝑠𝑗(𝑛 − 𝑘) + η𝑖(𝑛)
𝑁𝑖𝑗

𝑘=0
𝑃
𝑗=1           (3.28) 

Nij is the order of channel hij(k) and we define Nj as the Maximum of Nij over i. Zero-

padding the hij(k) should have been done if it is necessary[38]. We can define the 

parameters as below: 

𝒙(𝑛) = [x1(n),x2(n),x3(n), … , xM(n)]T     (3.29) 

hj(n)= [h1j(n),h2j(n),h3j(n), … , hMj(n)]T     (3.30) 

𝛈(𝑛) = [η 1(n), η 2(n), η 3(n), … , η M(n)]T     (3.31) 

Using formula 3.29, 3.30 and 3.31in formula 3.28 we have: 

x(n) = ∑ ∑ 𝒉𝑗𝑠𝑗(𝑛 − 𝑘) + 𝛈(𝑛)
𝑁𝑗

𝑘=0
𝑃
𝑗=1       , n=0,1,…   (3.32) 

By using the smoothing factor L consecutive outputs: 

𝒙̅(𝑛) = [xT(n),xT(n-1),xT(n-2), … , xT(n-L+1)]T     (3.33) 

𝛈̅(𝑛) = [η T(n), η T(n-1), η T(n-2), … , η T(n-L+1)]T    (3.34) 

𝒔̅(𝑛) = [s1(n), s1(n-1), s1(n-2), … , s1 (n - N1 – L + 1) , … , sp(n), sp(n-1), sp(n-2), … , 

sp (n – Np – L + 1)]T     (3.35) 

𝑁 = ∑  𝑁𝑗
𝑃
𝑗=1      (3.36) 

Usig formula 3.33, 3.34 and 3.35 in equation 3.32 we have: 

𝒙̅(𝑛) = ∆𝒔̅(𝑛) + 𝛈̅(𝑛)     (3.37) 

where ∆ is a ML*(N+PL) matrix defined as below: 

∆ = [∆1, ∆2,…, ∆p]     (3.38) 
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∆j=[

𝒉𝑗(0) … … 𝒉𝑗(𝑁𝑗) ⋯ 0
⋮ ⋱ ⋮

0 … . 𝒉𝑗(0) … . ⋯ 𝒉𝑗(𝑁𝑗)
]     (3.39) 

∆j  is a ML*(Nj+L). 

Statistical covariance matrices of the signals and noises are: 

Rx = E(𝒙̅(𝑛)𝒙𝑻̅̅ ̅(𝑛) )     (3.40) 

Rs = E(𝒔̅(𝑛)𝒔𝑻̅̅ ̅(𝑛) )     (3.41) 

Rη = E(η̅(𝑛)η𝑻̅̅ ̅(𝑛) )     (3.42) 

Easily this can be shown that [30]: 

Rx = ∆Rs∆T + 𝝈η
2 IML     (3.43) 

where 𝝈η
2 is the variance of the noise, and IML is the identity matrix of order ML. 

Considering to  have one transmitter and one receiver, the signal hypothesis are given 

respectively: 

H0 : x(n) = η(n)                                                 n=0,1,2,…  (3.44) 

H1 : x(n) = ∑  ℎ(𝑘)𝑠(𝑛 − 𝑘) + 𝜂 (𝑛)𝑁
𝑘=0    n=0,1,2,…  (3.48) 

 

Figure 3.12 : A model of wireless communication 

 

In figure 3.12, s(n) is the transmitted signal samples, x(n) is the received signal saples, 

channel effect is consisting of path loss, multipath fading and time dispersion  shown 

with h(k) called channel response .η(n) are independent and identically distributed (iid) 
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white noise samples with zero mean and 𝝈η
2 variance. N is the order of the channel 

[37].  

The recieved signal is as follow: 

x(n)=s(n) + η(n)     (3.49) 

which s(n) is the signal passed through the channel affected by both large scale and 

small scale fading. 

Autocorrelation matrix of x(n) is defined as below: 

Rxx = Rss + 𝝈η
2I     (3.50) 

considerinf subsamples of L constructive received signals we have: 

𝑥̅(𝑛) = [x(n),x(n-1),x(n-2), … , x(n-L+1)]T     (3.51) 

𝜂̅(𝑛) = [η(n), η (n-1), η (n-2), … , η (n-L+1)]T     (3.52) 

𝑠̅(𝑛) = [s(n), s (n-1), s (n-2), … , s (n-L+1)]T     (3.53) 

So, in the case of H1: 

𝑥̅(𝑛) = ∆𝑠̅(𝑛) + 𝜂̅(𝑛)     (3.54) 

where ∆ is a L*(N+L) matrix defined as : 

∆=[
ℎ(0) … … ℎ(𝑁) ⋯ 0

⋮ ⋱ ⋮
0 … . ℎ(0) … . ⋯ ℎ(𝑁)

]     (3.55) 

There is no infinite signal samples in real life. So, we only have access to the sample 

covariancematrix rather than the statistical one.  

For computing sample covariance matrix we have: 

Rx(Ns) = 
1

𝑁𝑠
∑ 𝑥̅(𝑛) 𝑥̅ 𝑇(𝑛)

𝐿−2+𝑁𝑠
𝑛=𝐿−1      (3.56) 

where Ns is the number of samples that are collected. 

By using the Rx(Ns) matrix, maximum and minimum eigen-value is calculated and 

shown by λmin and λMax signs respectivley. 

In the last step, the algorithm decides if ratio of maximum eigen-value to the minimum 

eigen-value is bigger than T1 or not. If the ratio is bigger than T1, the spectrum sensing 

method decidesthat the spectrum is being used and it decides idle otherwise.  
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Lets us assume the eigenvalues of Rx and ∆Rs∆T are λ1≥ λ2≥ λ3≥ … ≥ λML and α1≥ α2≥ 

α3≥ … ≥ αML respectively. We can easilyshow that: 

 λi = αi + 𝝈η
2 i=1,…, ML .     (3.57) 

If the channel is in idle status, λi gets equal to 𝝈η
2 so that the ratio of λMax and λmin gets 

equal to one, but if the channel is in busy status, that the ratio of λMax and λmin gets 

bigger than one. So we can check if the channel status and presense of signal by only 

checking λMax and λmin ratio. It is obvious that α1 is equal to αML if and only if ∆Rs∆T 

gets equal to λIML where λ is a positive number. Considering the definition of ∆ and 

Rs matrices, it is highly probable that ∆Rs∆T get not equal to λIML. in fact, the worst 

case is when Rs is equal to 𝝈s
2I , which says the source signal samples are i.i.d. In such 

a case, ∆Rs∆T gets equal to 𝝈s
2∆∆T. 𝝈s

2∆∆T gets equal to λIML if and only if all rows 

of the ∆ have the same power and are co-orthogonal. It is possible only in the case that 

signal samples are iid, channel is flat-fading and only one reciever exists. Using the 

symbols it can be shown that:  

Nj = 0 for j=1,…,P and M=1.     (3.58) 

So, by choosing the smoothing factor L sufficiently large like below: 

L>
𝑁

𝑀−𝑃
     (3.60) 

the ∆ matrix becomes tall and hence: 

αn = 0      (3.61) 

λn = 𝝈η
2     ,n= N+PL+1 , … , ML     (3.62) 

in such a case 

 λ1 = α1 + 𝝈η
2     (3.63) 

λML = 𝝈η
2     (3.64) 

λ1
 > λML      (3.65) 

The minimum eigen-value actually gives the estimation of the noise power. This 

property has been used in direction of arrival estimation (DOA) and system 

identification [28]. 

In practice, no information is available about the number of transmitters (P) and 

channels orders. So, choosing L value is so difficult to check if it is bigger than the 
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ratio of N to M-P. We can choose L value less than the ratio of N to M-P that makes 

αM not equal to zero. However, we know that α1 is bigger than αML that makes λ1 to 

λ𝑀𝐿 bigger than one. Hence we can check the channel status by checking the ratio of  

λ1 to λ𝑀𝐿. 

Because of finite number of samples, Rx(Ns) may be very different from the statistical 

covariance matrix Rx . The distribution of eigenvalues of Rx(Ns) is very complicated 

and choosing threshold is very difficult. By using some latest random matrix theories 

to set the threshold, the probability of detection can be obtained.  

Pd as mentioned earlier in this thesis is the probability of detection and Pfa is the 

probability of false alarm. Because of lack of information about signal and even not 

having information about the existence or non-existance of the signal, it is very 

difficult to set the threshold based on Pd . So, we choose Pfa to choose the threshold for 

our algorithm. The threshold is not based on the signal property and SNR and only 

depends on Pfa value which is given by the standards used in that area. 

When there is no signal, Rx(Ns) turns to be Rη(Ns). the sample covariance matrix of 

the noise is: 

Rη(Ns) = 
1

𝑁𝑠
 ∑ 𝜂

𝐿−2+𝑁𝑠
𝑛=𝐿−1 (n)𝜂

𝑇
(n)     (3.66) 

Rη(Ns) is nearly a Wishart random matrix. Studying of the spectral or eigenvalue 

distribution of a random matrix is a really hot topic these days in mathematics. The 

joint probability density function (PDF) of a Wishart random matrix has been known 

for many years [32]. Because there is no closed form expression for this PDF, the 

expression was so hard. In the years of 2000 and 2001,  I.M. Johnstone and K. 

Jahansson had found the distribution of the largest eigenvalue as described as follow 

[29] : 

First theorem, assumes that noise is real. Let us consider the formulas below: 

 A(Ns) = 
𝑁𝑠

𝜎𝜂
2Rη(Ns)      (3.67) 

μ =(√𝑁𝑠 − 1 +  √𝑀𝐿 )2         (3.67) 

 ν = (√𝑁𝑠 − 1 +  √𝑀𝐿 )(
1

√𝑁𝑠−1
+  

1

√𝑀𝐿
)1/3         (3.68) 

Assuming, 
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lim
𝑀𝐿

𝑁𝑠
=y when 𝑁𝑠 → 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 .     (3.69) 

then y gets between 0 and 1. Then  

𝜆𝑀𝑎𝑥(𝑨(𝑁𝑠))− μ 

ν
      (3.70) 

converges to Tracy-Widom distribution of order 1 (W1). 

Second theorem, is for the limit of smallest eigenvalue of  the distribution as follow 

[30]: 

In this theorem, we assume, 

lim
𝑀𝐿

𝑁𝑠
=y when 𝑁𝑠 → 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦      (3.71) 

so that y is between 0 and 1. Then, 

lim𝜆𝑚𝑖𝑛= 𝜎𝜂
2(1 - √𝑦)2 when 𝑁𝑠 → 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 .     (3.72) 

As the same, 

𝑙𝑖𝑚𝜆𝑚𝑖𝑛= 𝜎𝜂
2(1 + √𝑦)2 when 𝑁𝑠 → 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦.     (3.73) 

So minimum value of eigenvalues when Ns is large can be defined as 

𝜆𝑚𝑖𝑛 =  
𝜎𝜂

2

𝑁𝑠
(√𝑁𝑠 −  √𝑀𝐿)2       (3.74) 

in the center and variance is tend to zero. 

Based on the theorem 1 and 2 it has been shown that theorem 1 gives the distribution 

of largest eigenvalue and theorem 2 is used for the minimum eigen-value. 

As the limiting law of a certain random matrices, Tracy-Widom distributions were 

found by Tracy Widom in 1996 [eig 13&14]. Assuming that T1 is the cumulative 

distribution function of the Tracy-Widom distribution of order 1, there is no closed 

form for it and is shown as below: 

T1(t) = exp(- 
1

2
 ∫ (𝑞(𝑢) + (𝑢 − 𝑡)𝑞2(𝑢))𝑑𝑢

∞

𝑡
)     (3.75) 

where q(u) is the solution of the nonlinear Painleve II differential equation. 

𝑞′′(𝑢) = 𝑢𝑞(𝑢) + 2𝑞3(u).      (3.76) 
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It is generally hard to evaluate T1(t) but there are some tables for this function in 

literature[31]. In the table below for instance , there are some values of T1(t) in some 

points. 

Table 3.1 : Tracy-Widom distribution table for some samples 

t -3.90 -3.18 -2.78 -1.91 -1.7 -0.59 0.45 0.98 2.02 

T(t) 0.01 0.05 0.10 0.30 0.50 0.70 0.90 0.95 0.99 

 

These tables in the literatures can be used to find the inverse of Tracy-Widom 

distribution also.  

3.2.1   Maximum to minimum eigen-value based spectrum sensing 

Maximum to minimum eigen-value (MME) based spectrum sensing method is one of 

the best covariance based spectrum sensing methods. Comparison threshold could be 

calculated as follow. 

Pfa can be determined considering theorem 1 and 2 as: 

Pfa = P(𝜆𝑚𝑎𝑥 >  𝛼1𝜆𝑚𝑖𝑛 ) = P (
𝜎𝜂

2

𝑁𝑠
𝜆𝑚𝑎𝑥(𝑨(𝑁𝑠)) > 𝛼1𝜆𝑚𝑖𝑛 )  = 

P(
𝜎𝜂

2

𝑁𝑠
𝜆𝑚𝑎𝑥(𝑨(𝑁𝑠)) >  𝛼1(√𝑁𝑠 −  √𝑀𝐿)2   ) = P (

𝜆𝑀𝑎𝑥(𝑨(𝑁𝑠))− μ 

ν
>  

𝛼1(√𝑁𝑠− √𝑀𝐿)2− μ 

ν
 ) 

= 1-T1(
𝛼1(√𝑁𝑠− √𝑀𝐿)2− μ 

ν
)     (3.77)  

So, 

T1(
𝛼1(√𝑁𝑠− √𝑀𝐿)2− μ 

ν
) = 1- Pfa           (3.78) 

Equation 0 can be shown as as follow also: 

𝛼1(√𝑁𝑠− √𝑀𝐿)2− μ 

ν
 = 𝑇1

−1( 1 - 𝑃𝑓𝑎)     (3.79) 

μ and ν are defined in 3.67  and 3.68 as: 

 μ =(√𝑁𝑠 − 1 +  √𝑀𝐿 )2                                               (3.80) 

 ν = (√𝑁𝑠 − 1 +  √𝑀𝐿 )(
1

√𝑁𝑠−1
+  

1

√𝑀𝐿
)1/3                    (3.81) 

using formula 3.80 and 3.81 in the equation 3.79 and considering Ns-1 ≅ Ns: 
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𝛼1 =  
(√𝑁𝑠+ √𝑀𝐿)2

(√𝑁𝑠− √𝑀𝐿)2 . (1+
(√𝑁𝑠+ √𝑀𝐿)

−
2
3

(𝑁𝑠𝑀𝐿)
1
6

𝑇1
−1(1 −  𝑃𝑓𝑎))        (3.82) 

α1 is the threshold used for comparison. Equation number 3.82 determines that noise 

and properities of signal as parameters are not important in determining threshold 

value. This properity makes the sensing method a blind spectrum sensing model type. 

In the algoritm below, we have to give the pre-calculated threshold which is shown as 

α, L smoothing factor and number of samples.  

Algorithm 3.3: Maximum to minimum eigen-value spectrum sensing method 

Input  : 𝛼, Ns, L 

Output : Xi 

1: for each sensing period do 

2: Rx(Ns) = 
1

𝑁𝑠
∑ 𝑥̅(𝑛) 𝑥̅ 𝑇(𝑛)

𝐿−2+𝑁𝑠
𝑛=𝐿−1  

3: λmax = Maximum Eigen-value of Rx(Ns)        

4: λmin = Minimum Eigen-value of Rx(Ns)        

5: λ = 
λ𝑀𝑎𝑥

λ𝑚𝑖𝑛
 

6: if λ < 𝛼 then 

7: Ri  H0 

8: return Ri 

9: else if λ > 𝛼 

10: Ri  H1 

11: return Ri 

12: end for 

  

3.2.2   Energy to minimum eigen-value based spectrum sensing 

Energy to minimum eigen-value (EME) is introduced in literature as a blind sensing 

method [41]. This sensing algorithm is based on comaring the ratio of energy to 

minimum eigen-value with a threshold calculated in the way below. 
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When there is no signal, average energy can be shown as: 

T(Ns) = 
1

𝑀𝑁𝑠
∑ ∑ |𝑥𝑖(𝑛)|2𝑁𝑠−1

𝑛=0
𝑀
𝑗=1       (3.83) 

E(T(Ns)) = 𝜎𝜂
2 , Var(T(Ns))) = 

2𝜎𝜂
2

𝑀𝑁𝑠
     (3.84) 

T(Ns) is the average of MNs statistically independent and identically distributed 

random variables. If Ns is considered a large value, T(Ns) can be approximated as a 

Gaussian distribution with mean 𝜎𝜂
2  and variance 

2𝜎𝜂
2

𝑀𝑁𝑠
 using central limit theorem . 

So the probability of false alarm is : 

Pfa = P(T(Ns) > 𝛼2𝜆𝑚𝑖𝑛) ≅ P(T(Ns) > 𝛼2
𝜎𝜂

2

𝑁𝑠
(√𝑁𝑠 − √𝑀𝐿)2 ) =  

P(
𝑇(𝑁𝑠)− 𝜎𝜂

2 

√
2

𝑀𝑁𝑠
𝜎𝜂

2 
>  

𝛼2 √𝑀((√𝑁𝑠− √𝑀𝐿)2)− √𝑀𝑁𝑠 

√2𝑁𝑠 
 ) ≅ Q(

𝛼2 √𝑀((√𝑁𝑠− √𝑀𝐿)2)− √𝑀𝑁𝑠 

√2𝑁𝑠 
) (3.85) 

where 

Q(t) = 
1

√2𝜋
 ∫ 𝑒−

𝑢2

2  𝑑𝑢
+∞

𝑡
     (3.86) 

So the threshold for energy to minimum eigenvalue is : 

𝛼2 √𝑀((√𝑁𝑠− √𝑀𝐿)2)− √𝑀𝑁𝑠 

√2𝑁𝑠 
 = Q-1(Pfa)     (3.87) 

So that, 

𝛼2 =  
𝑄−1(𝑃𝑓𝑎)√2𝑁𝑠+ √𝑀𝑁𝑠

√𝑀(√𝑁𝑠− √𝑀𝐿)2
 = (√

2

𝑀𝑁𝑠
𝑄−1(𝑃𝑓𝑎) + 1)

𝑁𝑠

(√𝑁𝑠− √𝑀𝐿)2
  (3.88) 

Algorith 3.4 show the EME sensing algorithm. 

Algorithm 3.4: Energy to minimum eigen-value spectrum sensing method 

Input  : 𝛼, Ns, L 

Output : Xi 

1: for each sensing period do 

2: Rx(Ns) = 
1

𝑁𝑠
∑ 𝑥̅(𝑛) 𝑥̅ 𝑇(𝑛)

𝐿−2+𝑁𝑠
𝑛=𝐿−1  

3: T(Ns) = 
1

𝑁𝑠
∑ |𝑥𝑖(𝑛)|2𝑁𝑠−1

𝑛=0   
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4: λmin = Minimum Eigen-value of Rx(Ns)        

5: λ = 
T(𝑁𝑠) 

λ𝑚𝑖𝑛
 

6: if λ < 𝛼 then 

7: Ri  H0 

8: return Ri 

9: else if λ > 𝛼 

10: Ri  H1 

11: return Ri 

12: end for 

 

Figure 3.13 : Energy detection, double threshold energy detection, maximum to 

minimum eigen value and EME sensing method performance comparison of 

QPSK modulation in Gaussian channel. 

 

Figure 3.13 show the performance comparison of MME, EME, ED and DTED 

sensing algorithms performance using a Monte-Carlo simulation in Matlab software. 

EME has the worst performance among other well known sensing methods, so that we 

eliminate this sensing method in further studies in this thesis. 
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3.2.3 Double threshold maximum to minimum eigen-value spectrum sensing 

method 

In this part of the thesis, we introduce double threshold maximum to minimum eigen-

value (DTMME) method [33]. This method is based on using doublethreshold concept 

in classical maximum to minimum eigen-value detection to improve detection 

performance and make this method more reliable. As mentioned earlier, MME 

detection method is based on comparing the maximum to minimum ratio with a pre-

calculated threshold. In the case that this ratio is bigger than the threshold, the 

algorithm decides busy status and idle status in the other case. With a little error, the 

ratio of the maximum to minimum eigenvalue can pass the threshold or can be less 

than the threshold defined that can effect the detecting procedure. The main purpose 

in DTMME sensing algorithm is defining a restricted area near threshold. In the case 

that ratio get in the restricted area, In order to precvent falty decision, it eliminates he 

result. Restricted area constant (RAC) is shown as θ and defined as below: 

𝛼 1 = (1- θ) 𝛼       As lower boundary                (3.89) 

𝛼 2 = (1+ θ) 𝛼 As higher boundary                   (3.90) 

The algorithm of DTMME can be shown as follow. 

Algorithm 3.5:Double threshold maxinun to minimum eigen-value method algorithm 

Input  : θ, 𝛼, Ns, L 

Output  : Xi 

1: for each sensing period do 

2: Rx(Ns) = 
1

𝑁𝑠
∑ 𝑥̅(𝑛) 𝑥̅ 𝑇(𝑛)

𝐿−2+𝑁𝑠
𝑛=𝐿−1  

3: λmax = Maximum Eigen-value of Rx(Ns)        

4: λmin = Minimum Eigen-value of Rx(Ns)        

5: λ = 
λ𝑀𝑎𝑥

λ𝑚𝑖𝑛
 

6: 𝛼 1 = (1-θ) 𝛼       

7: 𝛼 2 = (1+θ) 𝛼 

8: if λ < 𝛼 1 then 
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9: Ri  H0 

10: return Ri 

11: else if λ > 𝛼 2 

12: Ri  H1 

13: return Ri 

14: else 

15: return nothing 

16: end for 

  

In this method, instead of Pfa, a new probability can be defined in hypothesis H0 

which is the probability of the eigen-value ratio be between boundaries in the case of 

H0 hypothesis which can be shown as follow. 

Pfa = p(𝛼 2<E(Ns)|H0) = T1(
𝛼2(√𝑁𝑠− √𝑀𝐿)2− μ 

ν
)          (3.91) 

P0 = p(𝛼 1<E(Ns)< 𝛼 2|H0) =  T1(
𝛼1(√𝑁𝑠− √𝑀𝐿)2− μ 

ν
) – T1(

 𝛼2(√𝑁𝑠− √𝑀𝐿)2− μ 

ν
) (3.92) 

This method increase the reliability of MME in high range by eliminating faulty 

decisions.  

The Monte-Carlo simulation model developed in MATLAB software and noise 

variances are 1 and 2 dBs for ED sensing method.  

Figure 3.14 shows how the performance comparison of DTMME, MME and ED with 

0, 1 and 2 dB uncertainties passing through Gaussian channel. ED has the best 

performance compared to the other detection methods. But in very big urban and 

complex cellular areas, it is possible to have some errors in noise varience used in 

energy detection. In thisfigure, it has shown that DTMME has much better 

performance compared to MME and is very near to the performance of ED without 

noise uncertainty. 
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Figure 3.14 : Double threshold maximum bto minimum eigen-value, maximum to 

minimum eigen-value and energy detection sensing method algorithms with 

0,1 and 2 dB uncertainties passing through Gaussian channels. 

 

Figure 3.15 shows the performance comparison of DTMME with the sensing methods 

mentioned passing through Rayleigh channel. In this channel model, the performance 

of DTMME is much better than the performance of ED without uncertainty because 

in the Rayleigh channel which is a very complicated channel model, the number of 

erroneous detection posiibility is much higher. 

Figure 3.16 shows the performance of DTMME passing through different Nakagami-

m channels. For m equal to 1, Nakagami fading channel becomes a Rayleigh channel 

and as the m goes to infinity the channel characteristics gets similar to Gaussian 

channel model. In this figure, Rayleigh, Gaussian, Nakagami-2, Nakagami-3, 

Nakagami-5 and Nakagami-15 channel models are used. The performance of the 

detection method gets better as the m value gets higher as expected. 

DTMME method can be one of the most important and advantageous spectrum sensing 

methods in cognitive radio technology in cellular communications. In cognitive radio 

based hospitals, this kind of sensing method can`t be used because of complexity of 

the system. DTMME algorithm is so complex to be be embedded in real mode small 

detectors to be use in CogMed.  
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Figure 3.15 : Double threshold maximum bto minimum eigen-value, maximum to 

minimum eigen-value and energy detection sensing method performance with 

0, 1 and 2 dB uncertainties passing through Rayleigh channel. 

 

Figure 3.16 : Double threshold maximum to minimum eigen-value sensing method 

performance in different channels. 
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4. MEMORY CONCEPT IN COGNITIVE RADIO DRIVEN HOSPITALS 

SENSING ALGORITHMS 

Wireless hospitals are introduced to eliminate the dense wire ropes from the 

environment. The biggest issue with this kind of hospitals is spectrum scarcity. For 

solving this issue, cognitive radio driven hospitals were introduced in literature 

[15],[16]. Cognitive radio technology is mainly studied for cellular communications 

and the most crucial parameter in this technology is spectrum sensing reliability. 

Spectrum sensing reliability even gets more significant in medical cases. For 

improving the sensing performance, two main ways introduced in literature. One is 

using cooperative spectrum sensing [42] technology and second one is using double 

threshold [40],[39] technology. Copperative sperum sensing is useless in CogMed 

because it needs wiring and makes the sensing system more complex. Double 

threshold technology improves the sensing performance under certain conditions but 

it is not enough for medical purposes. In this thesis, we introduced a novel model of 

using memory and using previously sensed samples in sensing procedure. We 

introduce two sensing algorithms, completely depending to the conditions of the 

medical section they are going to be used. These two sensing algorithms are memory 

based double threshold energy detection (MBDTED) and memory based energy 

detection (MBED) spectrum sensing algorithms. 

4.1 Memory Based Double Threshold Energy Detection Spectrum Sensing 

Algorithm 

MBDTED is a novel approach to DTED which improves the detection performance of 

it. This algorithm is based on saving the energy of last Т previously sensed signal 

samples and detection is made considering these energies. Collection of Т consecutive 

energy samples can be shown as follow: 

Ϻi(yi) = { E(yi-Т), E(yi-Т+1), E(yi-Т+2), … , E(yi)}     (4.1) 
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In the case that the maximum of these decision energies fall below the threshold λ1 the 

detection process decides the hypothesis H0 and in the case that the maximum is higher 

than λ2 the detection process decides the hypothesis H1. If the maximum is between λ1 

and λ2 in any way, the next maximum value is going to be used until it doesn’t be in 

the restricted gap. Because of environment in real life doesn’t change rapidly and in 

high order by time, this method will help our detection system to not only have the 

results of the time, it will use previously gathered information also that will help 

decision process in big range. Considering the improvement of detection process 

performance and reliability, T-1 sensing period delays can be bearable. Also by 

choosing T small enough, it is possible to make the delay minimum. Algorithm 4.1 

show the MBDTED spectrum sensing procedure. 

Algorithm 4.1: Memory based double threshold energy detection method algorithm 

Input   : Т, λ1, λ2, 𝝈η 

Output  : Yi 

1: for each sensing period do 

2: for ζ=1:N samples do 

3: if λ1< sample energy < λ2 

4: do nothing 

5: else 

6: ℮ζ(t)  Energy of sample ζ , ζ ϵ [1,2,…,N] 

7: end for 

8: ℮(t) = normalized energy of the selected total ℮ζ(t) samples 

9: Ϻi(yi)  Energy of previous Т received signals and ℮(t) 

10: M(t) = MAX { Ϻi(yi) } 

11: if λ1< M(t) < λ2 

12: Qi(yi) = Ϻi(yi) – M(t) 

13: M(t) = MAX { Qi(yi) } 

14: end if 
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15: if M(t) < λ1 then 

16: Yi  H0 

17: else  

18: Yi  H1 

19: return Yi 

20: end for 

 

Pd, Pfa, P0 and P1 can be calculated as follow: 

Pfa= p(M(t)>𝜆2|H0)  = p(E(yi)> 𝜆2, E(yi-1), … , E(yi-T)> 𝜆2|H0) = p (E(yi)> 

𝜆2|H0).p(E(yi-1)> 𝜆2|H0) … p(E(yi-c)> 𝜆2|H0) = Q(
𝜆2− 𝜎𝜂

2 

√2𝜎𝜂
4/𝑁

)T+1   (4.2) 

Pd = p(M(t)> 𝜆2|H1)  = p(E(ri)> 𝜆2|, E(ri-1), … , E(ri-c)> 𝜆2|H1) =  p (E(ri)> 𝜆2|H1).p(E(ri-

1)> 𝜆2|H1) … p(E(ri-c)> 𝜆2 |H1) = Q(
𝜆2− (|ℎ|2𝜎𝑠

2+ση
2 ) 

√2(|ℎ|2𝜎𝑠
2+𝜎𝜂

2)/N
)T+1     (4.3) 

P0 = p(λ1< M(t)<λ2|H0) = (Q(
𝜆1− 𝜎𝜂

2 

√2𝜎𝜂
4/𝑁

) −Q(
𝜆2− 𝜎𝜂

2 

√2𝜎𝜂
4/𝑁

))T+1     (4.4) 

P1=p(λ1 < M(t) <λ2 |H1) = ( Q(
𝜆1− (|ℎ|2𝜎𝑠

2+ση
2 ) 

√2(|ℎ|2𝜎𝑠
2+𝜎𝜂

2)/N
) - Q(

𝜆2− (|ℎ|2𝜎𝑠
2+ση

2 ) 

√2(|ℎ|2𝜎𝑠
2+𝜎𝜂

2)/N
))T+1  (4.5)  

The performance of MBDTED is studied, analysed and compared with very well-

known DTED. All simulations are done in MATLAB software using QPSK modulated 

random signals and i.i.d. noise samples with Gaussian random variables. It is assumed 

that the channel doesn’t change while sampling in each sampling period. Based on 

IEEE 802.22, Pfa should be less or equal to 0.1 and Pd be more than 0.9. In the 

simulations Pfa is chosen as 0.1 and 105 test signals are used and averaged. DTED and 

MBDTED is studied with RAC equal to 0.5 and in memory section, T is equal to 2 

unless it is told to be different. T equal to 2 mean the detection method needs 2 

previously sensed normalized energies that should be saved in memory and be used in 

the detection procedure. 

Figure 4.1 shows the performance of ED, DTED and MBDTED in Gaussian channel 

models. Gaussian channel is the simplest channel model among all communication 
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channel models.  

MBDTED with a memory equal to 2, has a much better performance compared to 

DTED and ED in all SNR ranges. With only saving 2 previously sensed signals energy 

in detection process, a high range of performance can be achieved. Unlike DTED, the 

performance of MBDTED does not diminish suddenly in low SNRs like DTED. 

Figure 4.2 show the performance of ED, DTED and MBDTED in Rayleigh channel 

which is known as one of the worst communication channels. In this kind of channel, 

MBDTED again has a better performance compared to both DTED and ED also in all 

SNR ranges by only the delay of 2 sensing periods. 

 

 

 

Figure 4.1: Energy detection, double threshold energy detection and memoryful 

double threshold energy detection sensing methods performance over Gaussian 

channel 

Figure 4.3 shows the performance of MBDTED whith different memory values in 

Gaussian channels. In MBDTED without memory is the original DTED. By only using 

1 previously sensed signal energy the detection performance gets much higher. This 

value is getting better when we choose the T value equal to 2.   
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Figure 4.2 : Energy detection, double threshold energy detection and memory based 

double threshold energy detection sensing methods performance over Rayleigh 

channel 

 

Figure 4.3 : Memory based double threshold energy detection sensing method 

performance without memory and memory of saving 1 and 2 previously sensed 

signals energy over Gaussian channel. 
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In figure 4.4, the performance of MBDTED is evaluated in different memory values 

in Rayleigh channel. This can be seen from the figure that in this kind of channel 

model, again the performance is getting better as the T value gets higher. 

Choosing the value of memory, based on the communication channel estimated in the 

cognitive radio driven hospitals and acceptable delay in the sensing procedure, we can 

have the best performance needed in such areas. 

 

Figure 4.4 : Memory based double threshold energy detection sensing method 

performance without memory and memory of saving 1 and 2 previously sensed signals 

energy over Rayleigh channel. 

4.2 Memory Based Energy Detection Spectrum Sensing Algorithm 

In MBED we claim that the detection performance could improve if we save only the 

energy of last C received signals. So, we have to use a memory to save the data of 

these energies. Collection of C consecutive energy samples can be shown as follow. 

Ϻi(ri) = { E(ri-C), E(ri-C+1), E(ri-C+2), … , E(ri)}     (4.6) 

In the case that maximum of these decision energies fall below the decision threshold, 

Max{ Ϻi(ri) } < λ , the hypothesis H0, otherwise, presence of the signal will be decided. 

Because the environment does not change frequently by time, in the case of error there 

will be more data having information about the sensed channel. Considering the 

improvement of the sensing performance, C sensing period delay for the secondary 
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user to detect the vacancy of the signal could be bearable. Also, by choosing C and 

periodic sensing distance small enough, we can make the delay minimum. Algorithm 

4.2 shows the memory based energy detection procedure.  

Algorithm 4.2 : Memory based energy detection spectrum sensing algorithm 

Input   : C, λ, 𝝈η 

Output  : Ri 

1: for each sensing period do 

2: ℮(t)  Energy of the N samples 

3: Ϻi(ri)  Energy of previous C received signals and ℮(t) 

4: M(t) = MAX { Ϻi(ri) } 

5: if M(t) < λ then 

6: Ri  H0 

7: else  

8: Ri  H1 

9: return Ri 

10: end for 

 

 

For this algorithm the probability of false alarm and probability of detection can be 

calculated and shown as follow. 

Pfa= p(M(t)> λ|H0)  = p(E(ri)> λ, E(ri-1), … , E(ri-c)> λ|H0) = p (E(ri)> λ|H0).p(E(ri-1)> 

λ|H0) … p(E(ri-c)> λ |H0) = Q(
λ− ση

2  

√2ση
4 /𝑁

)c+1     (4.7) 

Pd = p(M(t)> λ|H1)  = p(E(ri)> λ, E(ri-1), … , E(ri-c)> λ|H1) = p (E(ri)> λ|H1).p(E(ri-1)> 

λ|H1) … p(E(ri-c)> λ |H1) = Q(
λ− (|ℎ|2𝜎𝑠

2+ση
2 ) 

√2(|ℎ|2𝜎𝑠
2+ση

2 )/N
)c+1    (4.8) 

Simulations done in MATLAB software with the same parameters in MBDTED. 
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In figure 4.5, The performance of ED, DTED and MBED methods are compared over 

Gaussian channel. Performance of DTED is much better than the performance of ED 

in high SNRs but its performance reduces in SNRs below -12.5. MBED has a 

performance much higher in all SNR ranges compared to ED and DTED. 

In figure 4.6, the performance of three sensing methods are compared in signals 

passing over Nakagami-15 channel. In this channel, again the performance of DTED 

has been reduced in SNRs lower than -12.5. MBED has a considerably higher 

performance compared to DTED and ED methods. 

 

 

Figure 4.5 : Energy detection, double threshold energy detection and memory based 

energy detection sensing methods performance over Gaussian channel. 

In figure 4.7, the performance of three sensing methods are compared in signals 

passing over Nakagami-1 which is known as Rayleigh fading channel. Rayleigh fading 

channels are known as one of the worst case channel conditions in cellular 

communication channels. The performance of DTED reduces in SNRs lower than -13 

dB. Again, performance of MBED is much higher compared to other two well-known 

detection methods. In -14 dB for example, detection probability of ED is 34.13%, the 

performance of DTED is 28.28% which is less than the ED sensing method 
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performance. Detection probability of MBED is 56.87% which is much higher than 

both ED and DTED methods in this low SNR. 

 

Figure 4.6 : Energy detection, double threshold energy detction and memory based 

energy detction sensing methods performance over Nakagami-15 channel. 

 

Figure 4.7 : Energy detection, double threshold energy detction and memory based 

energy detction sensing methods performance over Rayleigh channel. 
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In figure 4.8, MBED sensing method performance is compared over different 

Nakagami-m channels. As mentioned earlier, when limit of m is going to infinity, the 

Nakagami-m channel distribution becomes a Gaussian channel and when m is equal 

to 1, the distribution is a Rayleigh channel. Rayleigh is the worst channel model and 

Gaussian is the best possible one in Nakagami-m fading channel model. As seen from 

the comparison, the detection method has higher performance in Nakagami-1 channel 

and as the channel characteristics get worse for wireless communication, the detection 

performance gets lower. 

 

 

Figure 4.8 : performance comparison of memory based energy detection sensing 

method over Nakagami-m channels. 
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5. CONCLUSION 

In this thesis the performance of main blind and semi blind cognitive radio 

technologies are studied. It is shown that how double threshold technology effects the 

MME algorithm and a new algorithm is introduced. Cons and pros of double threshold 

concept are analyzed and the reason of some drawbacks of thistechnology are studied. 

Beacause of complexity of DTMME algorithm which makes it useless for medical 

purposes, two new methods are introduced based on saving previously sensed signals. 

Double threshod energy detection and energy detection with memory or in other 

words, memory based double threshold energy detection and memory based energy 

detection method algorithms are introduced. It is shown that using memory and saving 

the previously received signals energy in the algorithm can improve the detection 

performance of the energy detection based spectrum sensing in very high range. We 

compared the MBED and MBDTED methods with ED and DTED methods in different 

Nakagami-m channels by using only 2 previously saved signals. We have shown that 

with MBED and MBDTED performance is much higher than both of them in wide 

SNR range. Disadvantage of these methods are the time delay after the channel gets 

free but considering the improvement of the sensing performance, sensing time delay 

for the secondary user in order to detect the vacancy of the signal could be bearable. 

Also, by choosing sensig time delay and periodic sensing distance small enough, we 

can make the delay minimum. This research findings help to understand the effect of 

the memory in a sensing method and advantages and disadvantages of that which helps 

to find optimal solutions to fulfill fundamental sensing requirements in IEEE 802.22 

WRAN. 
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