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a b s t r a c t

Parkinson’s disease (PD) is the second most common neurodegenerative disorder all over the world.
There are resting tremor, bradykinesia, and rarely dystonia, all of which are motor symptoms, among
the manifestations of PD. But the direct use of these motor symptoms for diagnosis can be misleading
since PD can be confused with other Parkinsonisms and further disorders with a similar symptom.
Therefore gait can be used, which has significant dynamics in the detection of PD and is an extremely
complex motion. In this paper, we employed a state-of-the-art ensemble learning algorithm, called the
vibes algorithm, and the Hilbert-Huang Transform (HHT) to recognize PD gait patterns. We extracted
the features by the processing of the signals, which come from sixteen sensors on the bottom of both feet,
through HHT and sixteen statistical functions. We then performed the two-stage feature selection pro-
cess by using the vibes algorithm and the OneRAttributeEval algorithm. Finally, we exploited the vibes
algorithm and the Classification and Regression Trees as a base learner to differentiate between patients
with PD and the control group. The classification accuracy, sensitivity and specificity rates of the pro-
posed method are 98.79%, 98.92%, and 98.61%, respectively. Moreover, we thoroughly contrasted our
method with the previous sixteen works. The experiment results demonstrated that our method is
high-performance and maintains stability. We also found out two unrevealed markers that could provide
support in clinical diagnosis for PD apart from the classification task.
� 2020 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction gradually progressive disease [4]. The symptoms of PD are catego-
Neurodegenerative diseases lead to the structure and function
loss of the neurons, inclusive of their death. Parkinson’s disease
(PD) has the highest second prevalence in neurodegenerative dis-
eases. PD was firstly described in the paper entitled ‘‘An Essay on
the Shaking Palsy” by James Parkinson in 1817 [1]. The outstanding
characteristic of PD is bradykinesia, which is defined as the deceler-
ation ofmotions. In the early stage of the disease, themost apparent
symptoms of bradykinesia are inabilities in gait, sitting, and speech
[2]. PD patients are prone to fall. Therefore, gait disorders are one of
the distinctive features in determining PD patients. Besides, the
patients’ quality of life is immutable while quantifying gait signals.
Moreover, gait measurement provides conveniences to the patients
while monitoring their state of health periodically, as well.

Physicians can decide a definitive diagnosis of PD through only
a post-mortem examination [3]. PD is an insidiously onset and
rized into two subgroups: motor and non-motor [5]. All symptoms
are not able to coexist in each patient and the violence of them is
not the same in each PD patient [4,6,7]. Thereby, we can say that
the combination of symptoms of PD is different for each patient.
The symptoms of PD typically begin with resting tremor or
bradykinesia, and seldom with dystonia [2,8]. Hence, the diagnosis
of PD can particularly be misleading in the initial stage. Clinico-
pathologic studies have shown that the symptoms of 10% – 24%
of patients diagnosed as PD depend on further reasons [6,9]. There-
fore, it is required to concentrate on the motor symptoms which
are common for each PD patient.

We thoroughly reviewed all the other research works, which
are the same scope as this study. Besides, we would like to indicate
that the Parkinson datasets are the same, which were used in this
study and the following studies. Lee and Lim [10] introduced a
novel method to distinguish between idiopathic PD patients and
healthy subjects by using Neural Networks with Weighted Fuzzy
Membership (NEWFM) function. The method firstly derives new
forty features from the gait characteristics of the subjects, by using
the Wavelet Transform (WT) and various statistical methods
(SMEs). Daliri [11] proposed a novel approach for separating PD
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patients from healthy individuals. This method extracts the mean
frequency and the variance of frequency from the spectrum of
the gait signals by applying the Short-Time Fourier transform
(STFT) to them and then formed a single big histogram using the
concatenation of these components. They selected the histogram
bins by using Fisher’s discriminant ratio later on. Finally, they com-
puted the chi-square distance between the reduced histograms
and employed a support vector machine for classification. Aydın
and Aslan [12] introduced a new method finding out the patterns
in the data by using the aggregating one-dependence estimators
(A1DE) algorithm and the wavelet transform, whose wavelet type
is daubechies3. Alafeef and Fraiwan [13] introduced a new method
based on gait analysis, Continuous Wavelet Transform (CWT), and
ANN to classify PD subjects and healthy control subjects. Besides,
they have exhibited the gait patterns recognizing PD severities
based on the Hoehn and Yahr scale. STFT and WT used in these
studies assume that a signal is linear. However, most of the signals
in the real-world are both non-linear and unstable. Besides, the
models built in both studies are black-box models because of the
structures of the selected machine learning algorithms. In other
words, such models cannot help humans in discovering new
knowledge in the decision-making process.

Wahid et al. [14] developed a novel method based on Multiple
Regression Normalization Strategy (MRNS) and Random Forest
(RF). They used MRNS, which explains subject age, height, body
mass, gender, and self-selected walking speed to detect differences
in spatiotemporal gait features. The features that they used for
classification are stride length, cadence, stance time, and double
support time. Perumal and Sankar [15] presented a new method
based on spatiotemporal and kinetic parameters of the gait, and
Linear Discriminant Analysis (LDA). The spatiotemporal parame-
ters comprise of the step distance, stride time, stance, and swing
phases. The kinetic parameters consist of heel force below toe
force, toe force, and the normalized ones of these three parameters.
They also developed a method that is built on the frequency-
domain characteristics of the signals and LDA for the tremor
assessment. Abdulhay et al. [16] proposed a novel approach to
diagnose PD. They developed the pulse duration algorithm (PDA)
to extract temporal features such as the stance and swing phases
and stride time. They then employed Medium Gaussian Support
Vector Machine (MG-SVM) for gait pattern classification between
PD subjects and healthy subjects. They also developed a tremor
analysis for detecting the severity of PD. The spatiotemporal
parameters and the kinetic parameters are employed to detect gait
and balance disorders in general. The spatiotemporal parameters
and the kinetic parameters are used to detect gait and balance dis-
orders in general. It should be used more sophisticated signal pro-
cessing methods to determine the difference between Parkinson’s
disease-driven gait disorders and other gait disorders.

Ertuğrul et al. [17] proposed a novel method that is built on the
Shifted One-Dimensional Local Binary Patterns (Shifted 1D-LBP)
and Multi-Layer Perceptron (MLP). They also pinpoint local
changes in the gait signal by the Shifted 1D-LBP method. Zeng
[18] introduced a new approach using deterministic learning the-
ory for a distinction between healthy subjects and PD subjects.
They exploited localized Radial Basis Function (RBF) networks for
the identification of dynamics of the non-linear system. Medeiros
et al. [19] proposed a new method based on the Principal Compo-
nent Analysis (PCA) to extract the features and the Euclidean Dis-
tance (ED) to classify the data. Wu et al. [20] developed a
Support Vector Machines (SVM) model that employs the approxi-
mate entropy (ApEn), normalized symbolic entropy (NSE), and sig-
nal turns count (STC) parameters to differentiate between PD
patients and healthy individuals. These parameters give the mea-
surements of stride fluctuations in PD. Nandy [21] introduced a
novel approach based on statistical methods and Bayes’ classifier
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for differentiating between PD patients and healthy subjects. They
first utilized Normalized Auto Correlation (NAC) to compute the
degree of fluctuation in the gait of the individuals. They then
employed four different normality testing methods to obtain more
informative features. For feature selection, they used the Fisher
Discriminant Ratio (FDR).

Shrivastava et al. [22] effectively presented a comparative anal-
ysis of various algorithms inspired by nature for selecting the best
features and increasing the classification accuracy of the Artificial
Neural Network (ANN) algorithm used for distinguishing healthy
subjects from PD subjects. The experimental results showed that
the Binary Bat Algorithm (BBA) has better performance than con-
ventional methods such as the Particle Swarm Optimization
(PSO), Genetic Algorithms (GA), and the Modified Cuckoo Search
(MCS).

Some studies have been done for PD diagnosis based on deep
learning networks. Zhao et al. [23] developed a novel model that
put together a Convolutional Neural Network (CNN) and Long
Short-Term Memory (LSTM), which is a deep learning model, dis-
tinguishing PD subjects from healthy subjects. They also tried to
classify PD according to the severity levels. Zeng et al. [24] pro-
posed a novel method based on Three-Dimensional Phase Space
Reconstruction (3D-PSR), Empirical Mode Decomposition (EMD),
and ANN for distinguishing between PD patients and healthy sub-
jects. El Maachi et al. [25] proposed a new approach based on a
1D-Convolutional neural network (1D-CNN) to construct a Deep
Neural Network (DNN) classifier. They extracted the features by
18 parallel 1D-CNN. They tested their algorithm both to distin-
guish between PD individuals and healthy subjects and to predict
the severity of PD by using the Unified Parkinson’s Disease Rating
Scale (UPDRS).

Some studies have been performed for PD diagnosis based on
the Hilbert-Huang Transform. In the study done by Rojas et al.
[26], a new Computer-Aided system for diagnosing Parkinson’s dis-
ease is proposed, which is based on the Empirical Mode Decompo-
sition that decomposes any non-linear and non-stationary time
series into a small number of oscillatory Intrinsic Mode Functions
a monotonous Residuum. In the study done by Karan et al. [27],
empirical mode decomposition based features are used to reveal
the speech characteristics, and a new feature called Intrinsic Mode
Function Cepstral Coefficients (IMFCC) is introduced to find out the
patterns of Parkinsonian individuals’ speeches.

Finally, Farashi [28] introduced a novel method for discriminat-
ing between individuals with PD and healthy individuals by using
time, frequency, and time–frequency domains extracted from ver-
tical ground reaction force (VGRF) data and incorporating a deci-
sion tree classifier.

The contributions of the proposed algorithm compared to the
other works in literature are as follows:

Performing high-performance and maintaining stability in the
experiment results.

Building a transparent model helping physicians in discovering
new knowledge by using the vibes algorithm [29] and Classifica-
tion and Regression Trees (CART) [30].

The heels are a significant marker and more predictive in com-
parison with the other parts of the foot-bottom in differentiating
PD from control (CO) subjects.

The left foot signals give more information as compared to the
right foot signals in terms of the classification task.

It is also easy to implement the proposed method in hardware
because it is less costly computationally.

The rest of the paper is organized as follows. In Section 2,
we introduce various methods used in the proposed algorithm.
In Section 3, we describe the methodology and experimental setup.
In Section 4, we present results and discussion. Finally, we con-
clude in Section 5.
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2. Preliminaries

2.1. The vibes algorithm

Ensemble learning is a machine learning paradigm where mul-
tiple learners are trained to solve the same problem. The basic
principle of the ensemble learning approach is that the ensemble
decision created by appropriately combined individual predictors
is better than that of any ensemble member. Many experimental
and theoretical studies [31,32] also prove this. Every machine
learning algorithm has certain limits and therefore makes mis-
takes. The purpose of ensemble learning is to control the strengths
and weaknesses of algorithms while making the best decision [33].

The vibes algorithm is an ensemble learning algorithm devel-
oped by Aydın and Aslan [29]. The vibes algorithm is based on
majority-voting in terms of the model combination method, opti-
mized forward search in terms of the model selection method,
and it is homogenous in terms of base learner selection. Base learn-
ers utilize two fundamental methods handling a feature set. These
are decision fusion and classifier selection. In the decision fusion,
each base learner uses all the information of a feature set. In the
classifier selection, each base learner treats like a local expert
and merely uses a small set of features. The vibes algorithm applies
both decision fusion and classifier selection methods.

The vibes algorithm relies on two assumptions. The first is that
features are independent of each other. The latter is that features
are dependent on each other. Let D ¼ X ;f g be a training set, which
consists of the input space 2 R� , where m denotes the number of
data and n denotes the number of the features and the class labels .

Accordingly, the first assumption runs as follows: each base
learner L; 2 1; � � � ;f g learns a single feature on the training set,
in addition to the original training set. A temporary ensemble
model H : L [ � � � [ Lj is then composed of the base learners. As
to another assumption, the features are firstly arranged from the
highest to the lowest according to their amount of the information
in terms of classification. Either the ReliefF algorithm [34] or Shan-
non entropy [35] can be chosen for quantifying the amount of the
information. After sorting the features of the original dataset, each
base learner learns new datasets that are composed of the first one,
the first two, the first three, and the first and nth features of the
ordered original dataset, in order. A temporary ensemble model
H : L [ � � � [ Lj is composed of base learners afterward. Finally, k
base learners are selected within (n + 1) base learners to constitute
the most suitable ensemble by using the majority-voting method
and the optimized forward search algorithm (OFSA). The pseudo-
code of the vibes algorithm is shown in Algorithm 1.

Algorithm 1: The vibes algorithm

Input:
X denotes a sample space
y denotes class labels
L denotes a base learner
f denotes a parameter about if the features are dependent

on or independent
r denotes a parameter about what feature scoring method is

selected (the ReliefF algorithm or Shannon entropy)
Output:
H denotes a final model
(1) Rank and score the features according to the parameter r
(2) if (f is ‘independent’) :
(3) Generate a new dataset per feature (Xi, i = 1, . . ., n)
(4) Create new models hi from the new datasets and X by

using L and y
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(5) else
(6) Generate new datasets by the forms of X1, X1 [ Xn,

X1 [ X2 . . .

(7) Create newmodels hi from the new datasets by using L
and y

(8) Select the most suitable models using OFSA
(9) Create the final model H based on the majority-voting of

the models
(10) return H

Without applying the optimization to the vibes algorithm, its time
complexity is X nð Þ and O n2

� �
, respectively for the best and the

worst cases. The space complexity of the algorithm is

X max
n;m2Nþ

n;mf g
� �� �

and O max
n;m2Nþ

n;mf g
� �2
 !

respectively, for the

best and the worst cases [29].
An implementation of the vibes algorithm is available at https://

uk.mathworks.com/matlabcentral/fileexchange/69350-the-vibes-
algorithm.

2.2. Classification and regression trees algorithm

Classification and regression trees (CART) are a machine learn-
ing algorithm developed by Breiman et al. [30]. CART constructs
simple but powerful models by partitioning the data space recur-
sively for making up a prediction model from data. It adopts a
greedy (i.e., non-trackback) approach in which decision trees are
created in the form of a top-down recursively split and manage.
The process of creating the decision tree is shown in Algorithm 2.

Algorithm 2: The CART algorithm

Input:
D denotes a training set

Output:
n denotes the root node

(1) Compute the weighted impurity of node n
(2) Estimate the probability that an observation is in node n

using P Tð Þ ¼Pi2Twi where wj is the weight of
observation i, and T is the set of all observation indices in
node n

(3) Sort pi in ascending order (pi denotes all the split
predictors, i ¼ 1; � � � ; t)

(4) Determine the best way to split node n using pi by
maximizing the impurity gain overall splitting
candidates

(5) Split the node using the best split in step 4 if the stopping
criteria are not satisfied

(6) return n

The CART algorithm uses the Gini index for quantifying the impu-
rity of the attributes. Let D be a dataset. Accordingly, the impurity
of D is measured by the Gini index. The Gini index is calculated
by using the formula in Equation (1). Let D be split in the way of
D1 and D2 by using the attribute A, the Gini index is calculated by
using the formula in Equation (2). Also, the reduction in impurity
to be formed by a binary split on a discrete or continuous value fea-
ture is calculated using the formula in Equation (3).

https://uk.mathworks.com/matlabcentral/fileexchange/69350-the-vibes-algorithm
https://uk.mathworks.com/matlabcentral/fileexchange/69350-the-vibes-algorithm
https://uk.mathworks.com/matlabcentral/fileexchange/69350-the-vibes-algorithm
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Gini Dð Þ ¼ 1�
Xm
i¼1

p2
i ð1Þ

where p denotes the probability of a case in a node.

GiniA Dð Þ ¼ D1j j
Dj j Gini D1ð Þ þ D2j j

Dj j Gini D2ð Þ ð2Þ

DGini Að Þ ¼ Gini Dð Þ � GiniA Dð Þ ð3Þ
2.3. Hilbert-Huang transform

Traditional data analysis methods assume that a signal is lin-
ear and stationary. Wavelet analysis and Wagner-Wille distribu-
tion [36,37] assume that a signal is non-stationary but linear.
Additionally, there exist lots of non-stationary time series analy-
sis methods [38,39]. But, these methods assume that the system
is stationary and stable. Indeed signals are both non-linear and
unstable in many real systems, which are natural or human-
made. Analyzing non-linear and non-stationary signals dis-
parately than their nature engenders many troubles. The neces-
sary and sufficient condition to represent non-linear and non-
stationary data is to have an adaptive base. A priori defined
function cannot recline on a strong and flexible base. Building
an adaptive and posterior defined method is the key to solve
such a problem [40]. Hilbert-Huang Transform (HHT) developed
by Huang et al. can cope with such troubles [41–43].

HHT consists of Empiric Mode Decomposition (EMD) and Hil-
bert Spectral Analysis (HSA). HHT is a proper method for non-
linear and non-stationary data analysis, particularly time–
frequency-energy demonstrations. Furthermore, HHT was only
empirically tested and gained validity [40].

EMD is a data-driven, posterior-defined, intuitional and adapt-
able method. EMD assumes that the data consists of different
intrinsic oscillation modes. An intrinsic mode function (IMF) repre-
sents a simple oscillation mode corresponding to a simple har-
monic function, that is, expresses the signal as a simple
harmonic component, instead of constant amplitude and fre-
quency. IMFs have an amplitude and frequency varying as the
function of time. The original signal is the sum of IMFs along with
the last monotonic tendency [42,44]. The pseudo-code of the EMD
algorithm is shown in Algorithm 3.

Algorithm 3: The EMD algorithm

Input:
x denotes the original signal

Output:
d denotes IMFs
r denotes the residual signal

(1) n ¼ 0 and find all extrema (maxima, minima) of x ¼ r0
(2) Compute the interpolation of the local extrema of rn for

obtaining the lower (emin) and upper (emax) envelopes
(3) Compute the mean envelope (m ¼ eminþemax

2 )
(4) Compute the candidate IMF (dnþ1 ¼ rn �m)
(5) if dnþ1 is an IMF
(7) else
(8) Take dnþ1 as the input in step 2
(9) Repeat the process until rn satisfies the stop criteria
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The local nature of EMD can generate oscillations in disparate scales
for a mode or oscillations in similar scales for different modes. This
is an unwanted situation, and using similar scales per the mode is
desired. This outcome of EMD gives rise to a problem called ‘‘mode
mixing”. To eliminate the above-mentioned lack and many lacks
such as being non-resistance to noise, Colominas et al. developed
a method called the improved Complete Ensemble Empirical Mode
Decomposition with Adaptive Noise (the improved CEEMDAN) by
improving EMD [44]. The pseudo-code of the improved CEEMDAN
algorithm is shown in Algorithm 4.

Algorithm 4: The improved CEEMDAN algorithm

Input:
x denotes the original signal

Output:
d denotes IMFs
r denotes the residual signal

(1) Compute the local means of the realizations
x ið Þ ¼ xþ b0E1 w ið Þ� �

by EMD to obtain the first residual

signal r1 ¼ hM x ið Þ� �i
(2) Compute the first mode d1 ¼ x� r1
(3) Compute the second residue as the average of local

means of the realizations r1 þ b1E2 w ið Þ� �
and compute

the second mode d2 ¼ r1 � r2 ¼ r1 � hM r1 þ b1E2 w ið Þ� �� �i
(4) Compute the kth residue for k ¼ 3; � � � ;K

rk ¼ hM rk�1 þ bk�1Ek w ið Þ� �� �i
(5) Compute the kth mode, dk ¼ rk�1 � rk
(6) Go to step 4 for next k

bk ¼ ekr rkð Þ is used to obtain the desired signal-to-noise ratio
between the added noise and the residue to which the noise is
added. M �ð Þ denotes the operator which produces the local mean
of the signal that is applied to. Ek �ð Þ denotes the operator which pro-
duces the kth mode obtained by EMD. w ið Þ denotes a realization of
zero mean unit variance white noise.

In all implementations, we used the EMD toolbox available at
http://perso.ens-lyon.fr/patrick.flandrin/emd.html. An implemen-
tation of the original formulation of CEEMDAN can be found at
http://www.bioingenieria.edu.ar/grupos/ldnlys/.

HHT aims to find out the relation between the time–frequency-
energy of a signal. The method also locally depicts non-stationary
data. To calculate Instantaneous frequency (IF) and amplitudes,
and to describe a signal locally, HHT employs Hilbert transform
(HT). The Hilbert transform y tð Þ of a signal x tð Þ is calculated as in
Equation (4).

y tð Þ ¼ 1
p
P
Z ‘

�‘

x sð Þ
t � s

ds ð4Þ

where P is the Cauchy principal value of the singular integral. As a
result of this transformation, the phase angle of the signal xðtÞ is
shifted by ± 90� to expand the signal xðtÞ to the complex plane.
Then, with the combination of the signal xðtÞ and the Hilbert trans-
formation of xðtÞ, the analytical representation z tð Þ of the signal xðtÞ
is obtained as shown in Equation (5).

z tð Þ ¼ x tð Þ þ iy tð Þ ¼ a tð Þeih tð Þ ð5Þ

http://perso.ens-lyon.fr/patrick.flandrin/emd.html
http://www.bioingenieria.edu.ar/grupos/ldnlys/
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where i ¼
ffiffiffiffiffiffiffi
�1

p
. The instantaneous amplitude and instantaneous

phase of the analytical function z tð Þ are shown in Equation (6)
and (7), respectively.

a tð Þ ¼ x2 þ y2� �1=2 ð6Þ

h tð Þ ¼ tan�1 y
x

ð7Þ

As a result, the instantaneous frequency is calculated as shown
in Equation (8). Finally, the instantaneous frequency is the change
of the instantaneous phase of a signal over time.

x ¼ dh
dt

ð8Þ
3. Methodology

3.1. The Parkinson dataset

We drew the Parkinson dataset (which consists of Ga, Ju, and Si
datasets) [45–48] used in this study from the PhysioNET database
[49]. The data consist of the vertical ground reaction force (VGRF)
records for roundly two minutes on level ground. The subjects
walked at their chosen pace. Thus, one can consider the force
records as a function of time and location (e.g., stride time, swing
Table 1
The descriptive information for the Parkinson dataset [49]

Subjects Number
of data

Age Weight Height Gender

M F

PD 93 66.30 ± 9.50 72.40 ± 11.96 167.44 ± 8.59 58 35
Control 72 63.68 ± 8.70 72.69 ± 12.42 168.25 ± 8.58 40 32

Fig. 1. The changes of the vertical ground reaction forces of the left and right feet of (a a
over time.
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time, and so.) [49]. This dataset includes gait measurements
obtained from 93 idiopathic PD patients and 72 healthy subjects.
There are eight sensors under the feet of each subject. The sensors
measure the vertical ground reaction force (Newton unit) as a
function of time. The output of the sensors has been recorded at
100 samples per second by digitizing. Moreover, the records
involve two signals, which are the sum of the outputs of eight
detectors. The descriptive information about this dataset is shown
in Table 1. A sample vertical ground reaction force record for the
Parkinson dataset obtained from the PhysioNET database is shown
in Fig. 1.
3.2. The creating and selecting of the features

Creating features by applying statistical analysis to unstruc-
tured or raw data is an important step in the machine learning
field. Additionally, feature selection is a crucial sub-topic in the
machine learning field. Feature selection is the task of selecting a
subset of the features used in the model creation process. Feature
selection is preferred due to three reasons: facilitating to interpret
models easily [50], reducing the training time of classifiers, and
avoiding errors resulting from variance [51].

There exist three general approaches for feature selection: the
filter approach, the wrapper approach, and the embedded
approach. The filter approach employs the general characteristics
of the training data independently of machine learning algorithms
[52]. The wrapper approach discovers the relation between rele-
vance level and the best feature subset and searches an optimal
feature subset adapted to a machine learning algorithm [53]. The
last one of the approaches deals with that the classification algo-
rithms perform good learning about which of the selected feature
subsets. This approach resembles the wrapper approach, but, the
learning process has an effect on the search process in an embed-
nd b) a control individual, (c and d) a PD patient, and (e and f) other one PD patient
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ded approach. This situation reduces the computational cost and
excessive trend.

There are many feature selection methods proposed in the liter-
ature. However, comparing these methods with each other is diffi-
cult. The reason is that datasets can contain many unrelated and
redundant features. Thus, the performance of the feature selection
algorithm is dependent on the performance of the learning algo-
rithm. Additionally, there exist lots of performance criteria such
as accuracy rate, computer sources, and the speed of feature selec-
tion in literature. Many researchers accept that there is no best
method among feature selection algorithms [52]. Therefore, differ-
ent feature selection algorithms try to address the problems that
their domains involve by using different strategies.

In this study, we performed the feature creation and selection
over the Parkinson dataset. We explained these steps to the follow-
ing in detail. Each of the sixteen signals per the subject interacts
with each other through three simple functions before beginning
the feature creation. Let L1, L2, L3, L4, L5, L6, L7, L8, T1, R1, R2,
R3, R4, R5, R6, R7, R8, and T2 be the eighteen signals obtained from
each foot of the subjects. Two of these signals (i.e., T1 and T2) are
the sum of the eight signals per foot. The 459 new signals are com-
posed of the eighteen signals by using the three simple functions:
f 1 x; yð Þ ¼ xþ y, f 2 x; yð Þ ¼ x� y, and f 3 x; yð Þ ¼ x� yj j. For instance,
we can obtain the three new signals, such as L1 + L2, L1-L2, and |
L1-L2|, by applying the three functions to the signals L1 and L5.
Consequently, we obtain the 477 signals per the subject after these
operations.

We then obtain the first six IMFs of each signal by applying the
improved CEEMDAN to the 477 signals. Moreover, we attain the
amplitudes (A) and IFs of each IMF via HHT. The amplitudes, IFs,
and IMFs belonging to the three subjects’ left feet are shown in
Fig. 2. We obtain Welch’s PSD estimates of each signal later on.
Thereby, we possess the IMFs, amplitudes, IFs, and Welch’s PSD
estimates per the signal. The Welch power spectral density esti-
mates of the sum-signals belonging to the left and right feet of
the three individuals are shown in Fig. 3. Besides, the feature cre-
ation\selection process is shown in Fig. 4.

We then apply the peak analysis to the amplitudes, IFs, Welch’s
PSD estimates, and the signals. We attain the four vectors corre-
sponding to a signal by the peak analysis. These vectors are the
maximum extreme values (pks), their locations (locs), their widths
(w), and peak-height values (p). The peak analyses of the sum-
signals belonging to the left and right feet of the three subjects
are shown in Fig. 5.
Fig. 2. The first IMFs of the vertical ground reaction forces of the left feet of (a) a control in
these IMFs.
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Finally, we create the 694,512 features by applying the sixteen
statistical functions to all the signals and vectors. These statistical
functions are the coefficient of variation, the maximum value, the
minimum value, the mean, the standard deviation, the coefficient
of skewness, the coefficient of kurtosis, the median, the range,
the Mean Absolute Deviation (MAD (0)), the Median Absolute
Deviation (MAD (1)), the sum, the Shannon entropy, the log energy
entropy, the sum of the absolute values of the vector elements, and
the Euclidean length of the vector.

We proceed to the feature selection step after the feature cre-
ation step. We select the features by using the OneRAttributeEval
method and run it over the stratified 10-fold cross-validation
(CV) to ensure generalization performance. We then obtain the
mean accuracy rates of each feature in the format of
mean� deviationð Þ. Finally, we select the features corresponding
to the rule specified by ourselves mean� deviation � 70ð Þ.
Thereby, we select only 135 features from 694,512 features.

3.3. The evaluation criteria

There need various statistical criteria to measure the perfor-
mance of the classifiers at the end of the learning process. These
criteria are the accuracy rate (ACC), the F-measure, the precision,
the recall, the specificity (SPF), the Receiver Operating Characteris-
tic (ROC) area, the Kappa value, the Root Mean Squared Error
(RMSE).

The precision value indicates what percent of the instances pre-
dicted as positive are correctly predicted. The precision is also
known as the positive predictive value (PPV). The recall value is
also known as the sensitivity or the true-positive rate (TPR) and
shows as positive are precisely predicted. The specificity value
expresses what percentage of the instances labeled as negative
are correctly predicted. The specificity is also known as the true-
negative rate (TNR). The F-measure [54] is a score that considers
both PPV and TPR of an experiment.

The erroneous predictions of a classifier result from either the
random predictions or incorrect predictions [55]. As a result, RMSE
can be used to quantify the performance of a classifier.

The Kappa value [56] is employed to measure the coherence
between the predictions and actual values [57] and was first devel-
oped by Cohen. The Kappa value also gives information about how
well a classifier learns the training data.

A classification of a new instance is obtained by comparing the
score s of the instance with a ‘classification threshold’ t. If s > t,
dividual and (b and c) two PD patients, and the amplitudes and IFs corresponding to



Fig. 3. TheWelch power spectral density analyses of the vertical ground reaction forces of the left and right feet of (a and b) a control individual, (c and d) a PD patient, and (e
and f) other one PD patient.
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then the new instance is classified as coming from class 1, and if
s � t as coming from class 0 [58]. The ROC area is then the area
under the ROC curve, which consists of a plot of the true-positive
rate versus the false-positive rate (FPR) with the varying in the
data amount.

4. Results and discussion

We performed all the experiments by employing the MATLAB
R2016b tool and selected the CART algorithm as a base learner
for the vibes algorithm. The changed parameters of the vibes and
CART algorithms and their values are shown in Table 2. The rest
parameters were initialized with default values. According to those
parameter values, the vibes algorithm assumes that the features
are independent of each other and uses the optimized forward
search while searching the most suitable base learner models.
Besides, the CART algorithm applies to the Twoing rule for deciding
how to split a node.

We ran the vibes algorithm for recognizing the patterns in the
Parkinson dataset, which has 135 features. We utilized 2-fold
cross-validation (CV), 5-fold CV, 10-fold CV, and leave-one-out
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cross-validation (LOOCV) both to evaluate the performance of the
vibes algorithm and to train it. By using the same dataset during
both training and test, we also analyzed if the model suffers from
underfitting or overfitting. Besides, each experiment, including
training, was repeated 10-times. Thereby, the data are in a differ-
ent fold in every repetition. The results of the experiments are
shown in Table 3. Accordingly, we obtained the lowest and highest
classification accuracy rates of 94.85% and 98.79% for 2-fold CV and
LOOCV, respectively. Additionally, the mean classification accuracy
rate is 96.2%, exclusive of all-training-all-test. We selected the
model obtained in the LOOCV experiment to classify the PD and
CO subjects because it has the highest ACC, TPR, and TNR, as well
as without standard deviation (SD). The percentage of the PD sub-
jects who are correctly identified is 98.92% for the LOOCV experi-
ment. Furthermore, the percentage of the control subjects who
are correctly identified is 98.61% for the LOOCV experiment. The
model used 24 features of 135 features in the LOOCV experiment.

Feature selection algorithms are categorized into three types:
the filter approach, wrapper approach, and embedded approach.
The filter approach quantifies feature importance based on the sta-
tistical characteristics of the features. Therefore, it runs indepen-



Fig. 4. The illustration of the feature creation and selection process.
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dently of the training algorithm. To use the filter approach, we
picked a function called Feature Selection using Neighborhood
Component Analysis (fscnca) in the MATLAB toolbox. The function
computes the feature weights by using a diagonal adaptation of
neighborhood component analysis (NCA), i.e., measures feature
importance by exploiting pairwise distances between data. The
wrapper approach begins training by using a subset of features
and then adds or removes a feature according to the selection cri-
terion of the algorithm. It continues selecting the features until its
stopping criteria are satisfied. To use the wrapper approach, we
utilized a function called Sequential Feature Selection (sequen-
tialfs) in the MATLAB toolbox, which builds a subset of features
by sequentially selecting features until there is no improvement
in the prediction of the selected classification algorithm. The
embedded approach computes the scores of features as a part of
the model learning process and selects features that work well
together with the learning process. To use the embedded approach,
we used a function called ‘predictorImportance’ in the MATLAB tool-
box, which computes predictor importance for the ensemble
model by aggregating changes in the risk on each base learner in
the ensemble. In terms of three feature selection types, the com-
parative results of various ensemble learning algorithms are shown
in Table 4. According to these results, the embedded strategy puts
together features making more accurate predictions on average on
the data compared to the filter and wrapper approaches. Besides,
the optimized forward search algorithm (OFSA) integrated into
the vibes algorithm is better in terms of performance in compar-
ison with the other feature selection methods. Exclusive of the
Random Subspace learning algorithm, we have used CART as a base
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learner in all the ensemble learning algorithms used in the exper-
iments, and the k-Nearest Neighbors algorithm as a base learner in
the Random Subspace learning algorithm. Additionally, we have
selected the method called ‘twoing’ as the split criterion for CART,
excluding the Adaptive Logistic Boosting and the Gentle Adaptive
Boosting algorithms. For all the ensemble learning algorithms,
the values of the rest parameters excluding ‘twoing’ are default.

We plotted a learning curve shown in Fig. 6 (a) to give the aver-
age prediction quality of the LOOCV model according to the size of
the training set. The prediction quality increases as the training set
grow. Further, the average and last values of F-measure are 0.9769
and 0.9877, respectively after the number of data exceeds 12.
Therefore, we can say that there are patterns in the data and the
learning algorithm picks up them. The reason for the poor perfor-
mance of a learning algorithm is either overfitting or underfitting
the data. We plotted the curves of RMSELOOCV and RMSEtraining
shown in Fig. 6 (b) to estimate howwell the LOOCVmodel matches
the real function. If the origination of the error related to the
LOOCV model is due to bias, the approaching of RMSELOOCV and
RMSEtraining to each other stops after a certain value as the amount
of data is increasing. In other words, the bias error of the LOOCV
model cannot be corrected even if the number of data is increased.
Additionally, there is a slight difference between RMSELOOCV and
RMSEtraining at each point. If the origination of the error is due to
variance, RMSELOOCV and RMSEtraining start to approach each other
as the number of data increases. On the other hand, the variance
error does not always decrease as the size of the dataset increases.
Accordingly, we can remark that the LOOCV model suffers from
neither the bias error nor the variance error. Further, the average



Fig. 5. The peak analyses of the vertical ground reaction forces of the left and right feet of (a and b) a control individual, (c and d) a PD patient, and (e and f) other one PD
patient over time.

Table 2
The parameters and corresponding values of the vibes and CART algorithms.

Classifier Parameter name Value

Vibes baseLearner ‘tree’
isDependent false
searchMethod ‘OFS’
featureRank ‘IG’

CART SplitCriterion ‘twoing’

Table 3
The experimental results of the learning model.

Number of
features

k-fold CV ACC ± SD
(%)

TPR ± SD
(%)

TNR ± SD
(%)

5 ± 0 all-training-
all-test

100 ± 0.00 100 ± 0.00 100 ± 0.00

25 ± 9 2 94.85 ± 1.47 95.16 ± 2.32 94.80 ± 1.35
24 ± 8 5 95.52 ± 0.78 95.81 ± 1.70 95.47 ± 0.76
22 ± 6 10 95.64 ± 1.04 96.34 ± 2.05 95.53 ± 1.02
24 ± 0 LOOCV 98.79 ± 0.00 98.92 ± 0.00 98.61 ± 0.00
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and last values of RMSEs of the LOOCV model are 0.1377 and
0.1101, respectively after the number of data exceeds 12.

The confusion matrix of this model is shown in Table 5. The
model misclassified one PD subject and one CO subject. The data
of these two subjects (i.e., ‘SiCo17_010 and ‘SiPt35_010) are
obtained by Frenkel-Toledo et al. [45]. The other performance
results of the model are shown in Table 6 and Table 7. According
to those results, we can remark that the model well recognized
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the patterns in data because the Kappa value, the mean F-
measure value, and the mean ROC area are very close to 1 and
the RMSE value is close to 0. The model learns perfectly because
the Kappa value is greater than 0.8. Moreover, the model can clas-
sify instances with both PD and CO very well because the average
F-measure is very close to 1. The ROC area represents a measure of
how well it can distinguish between PD and CO. Accordingly, the
model can separate PD from CO because the average ROC value
is very close to 1.

The selected features are shown in Table 8. The last column con-
tains information about the classification accuracy rate of each fea-
ture itself. The operations in each column summarize how to
generate a feature. For instance, we created the thirteenth feature
as the following: we first obtained a new signal by subtracting the
L3 signal from the L6 signal. We then acquired the fourth IMF of
the new signal and extracted the IF signal from this IMF afterward.
Finally, we achieved to form this feature by applying the entropy
function with log energy to the peaks of this IF signal.

We have drawn the following statistical results from the fea-
tures. The raw signals obtained from the subjects, by themselves,
cannot help to recognize the patterns in the data. Considering
the twenty-four raw signals used in the obtaining of the features,
the left foot signals outnumber the right foot signals, (nearly
33.33%). Accordingly, we can say that the left foot signals provide
more information in comparison to the right foot signals in terms
of classification. Additionally, we most utilized the L1 signal while
creating the features, in other words, it accounts for nearly 30% of
all the signals. The R1 signal is also the second most used signal
while creating the features, in other words, it accounts for nearly



Table 4
The comparative results of the ensemble learning algorithms with CART as a base learner, according to the feature selection types.

Classifiers Embedded (OFSA) Filter (fscnca) Embedded (predictorImportance) Wrapper (sequentialfs)

Vibes 95.64 ± 1.04 – – –
AdaBoostM1 – 85.86 ± 1.53 84.65 ± 1.85 82.42 ± 1.60
Bagging (Random Forest) – 83.03 ± 1.05 81.62 ± 0.35 88.08 ± 0.35
Adaptive Logistic Boosting – 88.28 ± 1.85 91.72 ± 0.93 79.39 ± 0.00
Gentle Adaptive Boosting – 87.47 ± 3.11 90.30 ± 2.42 86.06 ± 2.10
Robust Boosting – 83.23 ± 0.93 83.84 ± 1.85 81.41 ± 1.53
Random Undersampling Boosting – 77.58 ± 2.19 81.62 ± 1.26 82.63 ± 2.29
Random Subspace – 81.62 ± 0.70 – 84.24 ± 2.64

Fig. 6. (a) The learning curve of the LOOCV model (b) The variations of the RMSEs according to the number of data.

Table 5
The confusion matrix for LOOCV.

Actual class

PD CO

Predicted class PD 92 1
CO 1 71

Table 6
The basic statistics regarding the classification result for LOOCV.

Statistics Value

The number of instances 165
Correctly classified instances 163
Incorrectly classified instances 2
Accuracy rate (%) 98.7879
RMSE 0.1101
Kappa 0.9754
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15% of the used signals. Thus, the L1 and R1 signals account for
nearly half of the signals creating the features. As a result, we
would like to emphasize that the heels are a more important
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marker in comparison to the other parts of the foot-bottom in dif-
ferentiating PD from CO subjects. In other words, the heel-strike
and the heel-off stages of the gait cycle are much more predictive
than the rest. We used Welch’s PSD estimate in creating the seven-
teenth feature only. Therefore, we can state that Welch’s PSD esti-
mate does not contribute to recognizing the patterns as much as
the improved CEEMDAN method. We employed the improved
CEEMDAN method in 75% of the features. We particularly benefit-
ted from the second IMFs of the signals. Considering the amplitude
and IF signals extracted from IMFs, the amplitudes make the great-
est contribution to classifying the data as compared to the IF sig-
nals. Furthermore, the maximum extreme values (pks) and peak-
height values (p) are involved in the forming of the most suitable
feature subset. No the locations (locs) and widths (w) of the peaks
are involved in the forming of the feature subset. We especially
took advantage of the max, the range, the mean, the median, the
mean absolute deviation, and the median absolute deviation func-
tions from sixteen statistical functions.

The comparative results of the designed method and other
studies over the same Parkinson dataset are shown in Table 9.
We scrutinized those within the below works, which are only close
to our results. Furthermore, the criteria used in comparing our
work with the previous works are accuracy rate, the true-positive



Table 7
The detailed accuracy table by the classes for LOOCV.

TP FP PPV TPR TNR F1 ROC Class

0.9861 0.0108 0.9861 0.9861 0.9861 0.9861 0.9755 CO
0.9892 0.0139 0.9892 0.9892 0.9892 0.9892 0.9755 PD

Weighted Average 0.9877 0.0123 0.9877 0.9877 0.9877 0.9877 0.9755

Table 8
The features selected by the model for LOOCV.

No Signal Welch IMF A IF pks locs w p Function ACC (%)

1 L1 - R2 2 U range 72.728 ± 1.310
2 L6 - R5 kurtosis 74.342 ± 2.264
3 L1 - L4 2 U median 71.920 ± 1.910
4 |R1 - R2| 2 U MAD(0) 72.526 ± 1.958
5 |L1 - L6| 1 U U median 72.732 ± 2.113
6 L1 + R1 2 U mean 72.525 ± 1.312
7 L1 + L2 3 MAD(1) 72.256 ± 2.117
8 L4 + L7 kurtosis 73.601 ± 1.060
9 |L1 - L3| 2 U sum 73.336 ± 2.630
10 R1 - R7 max 72.932 ± 2.391
11 L1 + R8 4 range 73.804 ± 2.230
12 L1 - R2 2 U U max 72.191 ± 2.033
13 L3 - L6 4 U U log energy 72.453 ± 2.215
14 L8 + R1 5 U U median 73.132 ± 2.674
15 L1 - L6 U mean 74.007 ± 1.970
16 |L1 - L3| 2 U Shannon entropy 73.340 ± 3.087
17 L1 - L6 U mean 72.997 ± 1.784
18 |L1 - L6| 2 U U MAD(0) 72.598 ± 2.525
19 |L1 - L3| 2 U Shannon entropy 72.933 ± 2.398
20 L8 + R1 5 U MAD(0) 75.015 ± 1.328
21 L4 + L8 skewness 73.739 ± 3.448
22 |R1 - R2| 2 U MAD(1) 73.329 ± 2.643
23 L1 - R4 1 U U MAD(0) 73.599 ± 2.035
24 |R1 - R6| 2 U U median 72.053 ± 1.950
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rate, the true-negative rate, the stability in the experiment results,
and the model complexity.

Accordingly, the model devised by [23] is more complex than
ours. They used an LSTM with two-layers and set the number of
the cell of each LSTM layer to 100 since the gait cycle of most sub-
jects is about 1 s and the sampling frequency of their gait data is
10 ms. Each LSTM cell outputs a feature vector (which is 128-
dimensional) for predicting the probability of its own softmax clas-
sifier. Their CNN channel consists of two convolutional layers, two
max-pooling layers, and a fully connected layer. The convolutional
layers output 32 and 64 feature maps, respectively. The fully con-
nected layer outputs a 1024-dimensional feature vector to its own
softmax classifier for PD detection. Finally, the weighted average of
these two softmax classifiers was combined for the final classifica-
tion result. The classification accuracy rate of this model is 98.61%
under the 10-fold CV. We can remark that the implementation of
this model to any hardware is difficult. We cannot say something
certain about the real-world performance of the model because
the TPR and TNR results of the model are unknown and the classi-
fication accuracy rates of the model were not carried out under the
2-fold CV, 5-fold CV, LOOCV, and all-training-all-test. They per-
formed different training iterations in the three experiments to
acquire the best result by setting up the iterations to 300000,
500000, and 500,000 respectively, but, the weighted average of
the experiments should be taken for a more objective and certain
result. Therefore, we can remark that this result may be a little
biased. We ran each experiment for 10-times and gave the
weighted average of these experiments together with their stan-
dard deviations. [25] stated a situation like this the following:
there exists a discrepancy between the results obtained for the
algorithm in [23] and the results reported in their paper.
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Ref. [24] uses L5, L7, R7, and R8 signals because they have a sig-
nificant VGRF difference between PD patients and healthy controls.
They firstly computed the Euclidean distance of 3D phase space
reconstruction of VGRFs of the L5, L7, R7, and R8 signals and con-
catenated these values to form a reference variable set. They then
computed the EMDs of these reference variables and the derivation
of gait features. They chose the third IMFs since most of the energy
is concentrated in them. Finally, they classified the data by using
an RBF Network. By using 2-fold, 10-fold, and leave-one-out
cross-validation approaches, they obtained the classification accu-
racy rates of 91.46%, 96.99%, and 98.80%, respectively. The average
classification accuracy rate, average TPR, and average TNR of these
experiments is 95.75%, 95.66%, and 95.85%, respectively. Our
results are 96.20%, 96.56%, and 96.10%, respectively. The highest
classification accuracy rate, TPR, and TNR of them are 98.80%,
98.92%, and 98.63%, respectively. Our highest classification accu-
racy rate, TPR, and TNR are 98.79%, 98.92%, and 98.61%, respec-
tively. Further, they chose the model giving the best result, but,
the weighted average of all the experiments should be taken for
a more objective and clear result. Therefore, we can say that this
result may be a little biased.

Ref. [25] has used a DNN that consists of two parts. The first part
consists of eighteen parallel 1D-CNN. The second part is a fully
connected network that performs the concatenation of the
extracted features. The final classification result was taken accord-
ing to the majority-voting of all the segments. The Parkinson
dataset also contains double-task signals, where subjects were
walking while doing another activity. Accordingly, the number of
data recorded in the Parkinson dataset is 306. They used just 300
of these data. We used the data of the subjects, which walk without
doing another activity. Thus, we employed the 165 data in all. By



Table 9
The comparative results of the proposed method and other studies over the same Parkinson dataset.

Reference Feature creation/extraction/
selection

Classifier Number of
features

Number of
data

k-fold CV ACC ± SD
(%)

TPR ± SD
(%)

TNR ± SD
(%)

The proposed
method

HHT Vibes, CART 5 ± 0 165 all-training-all-
test

100 ± 0.00 100 ± 0.00 100 ± 0.00

25 ± 9 2 94.85 ± 1.47 95.16 ± 2.32 94.80 ± 1.35
24 ± 8 5 95.52 ± 0.78 95.81 ± 1.70 95.47 ± 0.76
22 ± 6 10 95.64 ± 1.04 96.34 ± 2.05 95.53 ± 1.02
24 ± 0 LOOCV 98.79 ± 0.00 98.92 ± 0.00 98.61 ± 0.00

[28] FFT, WT A decision
tree

27 165 10 100 ± 0.00 100 ± 0.00 100 ± 0.00

[25] 1D-CNN 1D-CNN 19 300 10 98.70 ± 2.3 98.10 ± 3.3 100 ± 0.0
[21] FDR Bayes 7 36 – – 94.98 95.83
[13] WT ANN – 166 training 99.10 – –

overall 97.60 – –
validation
+ testing

94.00 86.67 97.14

[24] EMD, PSR ANN 4 82 2 91.46 91.30 91.67
166 10 96.99 96.77 97.26
166 LOOCV 98.80 98.92 98.63

[12] WT A1DE 11 165 all-training-all-
test

93.94 94.62 93.90

2 90.91 91.40 90.90
5 93.33 93.55 93.30
10 93.94 94.62 93.90
LOOCV 93.94 94.62 93.90

[23] LSTM CNN, Softmax 19 – 10 98.61 (all) – –
98.70 (Ga)
98.41 (Ju)
98.88 (Si)

[16] PDA MG-SVM – 597 – 94.80 92.00 –
[20] ApEn, NSE, STC SVM – 58 LOOCV 84.48 72.41 96.55
[22] BBA ANN 11 8000 all-training-all-

test
99.00 (Ga) 99.30 98.60

8922 98.30 (Ju) 98.50 98.20
5500 98.50 (Si) 99.20 97.00
8000 – 93.08 (Ga) – –
8922 96.35 (Ju) – –
5500 89.93 (Si) – –

[19] PCA ED 3 100 LOOCV 81.00 86.00 76.00
[15] SMEs LDA 10 40 5 92.50 (Ga) – –

92.50 (Ju)
90.00 (Si)

[18] SMEs RBF network 4 166 all-training-all-
test

99.40 98.92 100

83 2 91.57 91.49 91.67
166 5 96.39 96.77 95.89
166 LOOCV 93.37 92.47 94.52

[17] Shifted 1D-LBP MLP 108 308 10 88.89 88.90 82.20
[14] MRNS RF 4 49 – 92.60 80.00 70.00
[11] STFT SVM 21 166 2 91.20 91.71 89.92
[10] WT NEWFM

function
40 1394 2 77.33 81.10 65.48
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using the 10-fold CV approach, they obtained the classification
accuracy rate of 98.70%. We obtained the classification accuracy
rate of 95.94%. Furthermore, our highest classification accuracy
rate is 98.79% by using the LOOCV style. The highest TPR and
TNR of them are 98.10% and 100%, respectively. Our highest TPR
and TNR are 98.92% and 98.61%, respectively. Accordingly, consid-
ering the standard deviations, our LOOCV model outperforms
theirs in terms of the classification accuracy rate and TPR, i.e.,
the percentage of the PD subjects who are correctly identified.
Finally, we would like to underline that the performance results
(i.e., ACC ± SD and TPR ± SD are 98.70 ± 2.3 and 98.10 ± 3.3, respec-
tively) that they obtained are statistically improbable.

Considering 2-fold CV, 5-fold CV, 10-fold CV, and LOOCV; the
accuracy, sensitivity, and specificity rates of the proposed method
are on average 96.20%, 96.56%, 96.10%, respectively. The results of
the other works are the following: considering 10-fold CV; the cor-
responding rates of [25] are 98.70 ± 2.3, 98.10 ± 3.3, and 100 ± 0.0,
respectively. Considering 2-fold CV, 10-fold CV, and LOOCV; the
rates of [24] are 95.75%, 95.66%, and 95.85%, respectively. Addi-
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tionally, there are no results regarding 2-fold CV, 5-fold CV, 10-
fold CV, and LOOCV in most of the works. Moreover, there are no
results either accuracy rate or sensitivity\specificity rates in some
works. Hence, it is uncertain whether such works may satisfy the
desired performance over real test data in the real-world.

Ref. [28] has performed a classification task by using the fea-
tures obtaining from time, frequency, and time–frequency
domains extracted from VGRF and the stance phase of the gait.
The classification accuracies under 10-fold CV are 99.38 ± 1.98,
100 ± 0.0, and 100 ± 0.0, respectively, for the heel strike, the mid-
foot strike, and the forefoot strike of the left foot. The classification
accuracies are 100 ± 0.0, 97.57 ± 3.13, and 100 ± 0.0, respectively,
for the heel strike, the midfoot strike, and the forefoot strike of
the right foot. However, some results are statistically unlikely
because the sum of the standard deviations and accuracies of them
is larger than 100. Besides, they did not report what kind of deci-
sion tree they used.

We maintained stability in the experiment results. The reason is
that our results’ standard deviation is 1.53 for 2-fold CV, 5-fold CV,
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10-fold CV, and LOOCV. The standard deviation in [24] is 3.12. For
[13], it is 1.8. In other words, the fluctuation in their standard devi-
ations is large compared to ours. Furthermore, the standard devia-
tion of our experiment is zero for LOOCV. That is, all the results are
the same under 10 different cross-validation sets. Besides, the all-
training-all-test results are not included in the results related to
the standard deviation.

The proposed approach is computationally less costly than
others because it was comprised of 24 decision tree models. The
complexity of CART is O mnlog2nð Þ, where m denotes features and
n denotes observations. Furthermore, the complexity of the vibes
algorithm is O m2

� �
for the worst case. Neural network (NN) models

in [13,24,25] have carried out lots of multiplications and the com-
putational complexity of the total number of multiplications and
additions is more than decision tree models.
5. Conclusion

A definitive diagnosis of Parkinson’s disease (PD) is only deter-
mined by a post-mortem examination. PD is an insidiously onset
and slowly progressive disease. PD has typical motor symptoms
and non-motor symptoms. All of the symptoms do not coexist in
each PD patient and the violence of the symptoms is not the same
in each patient. Thus, it is noteworthy that the combination of
symptoms and signs in PD, a heterogeneous clinical disease, is dif-
ferent in each patient. The symptomatic period of PD generally
begins with resting tremor or bradykinesia, and more rarely with
dystonia (involuntary contractions and seizures of the muscles).
Because of all these reasons, the diagnosis of PD can be misleading,
especially in the initial period. It has been demonstrated by clinico-
pathologic studies that the symptoms of approximately 25% of
patients who are pinpointed as PD depend on further reasons.
The development of PD is initially mild and its symptoms may be
different in each patient. Therefore, it is necessary to focus on
the motor symptoms in which the symptoms are common. One
of the parameters that can quantitatively measure the results of
motor symptoms is kinetic (e.g., pressure and force). Gait is a
dynamic that the important motor symptoms can uncover itself
and enables us to quantify vertical ground reaction force (VGRF).

In this paper, we presented a state-of-the-art method to recog-
nize the PD gait patterns. Our method relies on a novel ensemble
learning algorithm (i.e., the vibes algorithm), Classification and
Regression Trees (CART), and Hilbert-Huang Transform (HHT). Fur-
ther, we rigorously performed feature creation and selection pro-
cesses by exploiting HHT, the One-Rule Attribute Evaluation
algorithm (OneRAttributeEval), and the sixteen statistical func-
tions. The classification accuracy rate, true-positive rate (TPR),
and true-negative rate (TNR) of the proposed model are
98.7879%, 98.92%, and 98.61%, respectively. Accordingly, our
results are higher and more comprehensive as compared to the
abovementioned studies, inclusive of some studies which have
incoherent results. As a result of the features that we obtained,
the heels are a significant marker and more predictive in compar-
ison to the other parts of the foot-bottom in distinguishing
between PD and control (CO) subjects. Besides, we revealed that
the left foot signals give more information as compared to the right
foot signals in terms of the classification task that and the L1 signal
accounts for almost 30% of all the signals used the forming of the
features. Additionally; attributes such as the amplitudes (A), the
maximum extreme values (pks), and peak-height values (p) of
the signals were overwhelmingly used as forming the selected fea-
tures. The basic statistical functions such as the mean, the median,
and the Mean\Median Absolute Deviation (MAD) were employed
to form more than half of the selected features. It is likewise easy
to implement the proposed technique in hardware because it is
124
less costly, computationally. The model that we have obtained is
composed of fusing 24 decision tree models. The decision trees
result in a set of rules. These rules can be simply coded. Neural net-
work (NN) models were created in [13,24,25] and many multipli-
cations are performed in NN models. The run-time complexity of
matrix multiplication is much more than the rule-based models.
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