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Abstract—Recent studies on artificial materials demonstrate that
substantial improvements in electromagnetic response can be attained
by combining different materials subject to desired metrics. However,
the perfect material combination is unique and extremely difficult
to determine without automated synthesis schemes. In this paper,
we develop a versatile approach to design the microstructure of
periodic materials with prescribed dielectric and magnetic material
tensors. The proposed framework is based on a robust material
model and generalized inverse synthesis tool relying on topology
optimization. The former is derived using homogenization theory
and asymptotic expansion applied to Maxwell equations and can
characterize the effects of anisotropy and loss of materials with periodic
unit cells of arbitrary geometries and multi-phases much smaller
than the wavelength. Resulting Partial Differential Equation (PDE)
is solved numerically using Finite Element Analysis (FEA) and is
validated with results in literature. The material model proves to
be fast and numerically stable even with complex inclusions. The
topology optimization problem is applied for the first time towards
designing the unit cell topology of periodic electromagnetic materials
from scratch with desired dielectric and magnetic tensors using off-
the-shelf materials, i.e., readily available constituents obtained from
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isotropic ceramic powders. The proposed framework’s capability is
demonstrated with five design examples. Design with anisotropic
permittivity is also fabricated. Results show that the framework is
capable of designing, in an automated fashion, non-intuitive material
compositions from scratch with desired electromagnetic properties.

1. INTRODUCTION

Radio Frequency (RF) technologies are still mostly designed around
properties of available materials. In achieving true design capability,
however, the material itself need to be custom-designed for each
application possibly for any desired electromagnetic property. Unusual
properties of engineered artificial materials offer enormous potential
for advanced applications in the millimeter wave [1], Terahertz [2]
and optical frequency ranges [3]. Anisotropic ferrites, chiral materials,
photonic crystals [4], left-handed [5–9] and non-reciprocal media [10]
are well known paradigms. Strong controllability of dispersion in
waveguides leads to compact and therefore cost efficient phase shifters
and delay lines [11], miniaturized and enhanced integrated planar
filter components [12], radiation molded frequency selective surfaces
(FSS), e.g., for radomes, stealth planes, cellular phones [13, 14], sub
wavelength imaging and diffraction applications [15, 16], and light
emitting diodes coupling light generated in high refractive index
materials into air effectively. As the variety of examples in the
literature shows, the perfect combination of materials is unique and
extremely difficult to determine without a formal approach [17–
19]. Existing “conventional” metamaterials are based on analytical
or experimental studies, i.e., a formal design approach to predict
the exact spatial combination of material constituents from scratch
does not exist. To a broader extent, the mostly intuitive or
more recently simulation based design of materials with engineered
permeability and permittivity, through carefully designed inclusions
and the possible use of electronic components have been expanding
through the decade [20–24]. Intuition of the expert designers at
present is necessary for developing new devices as theory alone
provides only basic designs. Nevertheless, this approach encounters
difficulties such as the challenge to tune parameters and includes
a lot of guesswork and more importantly is very time consuming.
Therefore, the need for a systematic design methodology for developing
advanced devices relying on unconventional material by designing
their microstructure became very important. To address these
issues, this paper presents for the first time, an inverse synthesis
approach via the development of a generalized material model and its
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integration to topology optimization for designing, in an automated
fashion, the microstructure of novel magneto-dielectric materials from
scratch. The material model is constructed by homogenizing Maxwell
equations based on asymptotic expansion and therefore is an accurate
tool for modeling materials with arbitrary geometry inclusions and
multi-phases. The resulting effective material tensors of arbitrary
materials are described by spatially varying periodic parameters and
are numerically evaluated using the PDE-Coefficient Form module of
COMSOL Multiphysics, which is a commercial analysis software based
on the Finite Element Method. The other key module of the proposed
design framework is the synthesis tool based on the powerful topology
optimization method. The effective material model is linked through a
Genetic Algorithm and Direct Search toolbox (GADS) to the topology
optimization module which iteratively searches for the optimal unit
cell topology of the periodic structure on a MATLAB interface. The
objective of the topology optimization problem is to find the material
distribution of the unit cell microstructure employing off-the-shelf
isotropic constituents that delivers the desired constitutive material
tensor. The paper is outlined as follows: After reviewing background
related to both modules of the material synthesis framework, namely
mathematical homogenization and topology optimization, detailed
steps of the homogenization procedure of Maxwell equations are given.
Then, the numerical evaluation of effective material tensors is explained
in Section 3, where the derived formulas are numerically implemented
for various unit cell configurations and validated with existing results
in literature. The proposed material synthesis framework is presented
next before demonstrating its use on five design examples where
the goal is to achieve prescribed dielectric tensors by designing the
microstructure topology of the dielectric material’s unit cell. It is
anticipated that advances in these research topics will allow, for
the first time, integration of robust FEA based modeling tools and
generalized design algorithms to generate automatically totally novel
and yet unthinkable material designs that will lead to a new paradigm
in electromagnetic design. The outcome of these investigations
is anticipated to have also tremendous impact on materials based
interdisciplinary research.

1.1. Homogenization Theory

Homogenization refers to replacing the inhomogeneous, periodic
material in the microscopic scale with its homogeneous effective
equivalent that has the same macroscopic effect as the original
inhomogeneous structure [25–35]. The ability of computing the
homogenized material property of such repetitive composites allows
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replacing them with their equivalent homogenized constitutive material
property such as the dielectric permittivity and magnetic permeability
tensors, ε and µ. The effective process of homogenization of artificially
engineered materials is only possible if the average lattice constant e or
equivalently the dimension of the unit cell is electrically small enough
(e ≺≺ λg, where λg is the guided wavelength). Otherwise, undesirable
effects such as limited bandwidth, anisotropy, and poor refraction can
take place [36].

The goal of assigning electromagnetic parameters to a composite
or mixture of two or more component materials has long been
the aim of traditional analytic homogenization theories, which have
resulted in many well-known approximate mixing formulas, such as
the Clausius-Mossotti, Maxwell-Garnett, or the coherent potential
approximation [37], being the most popular ones. All known analytical
methods, however, are valid under certain limitations and particular
geometries or classes of structures.

S-parameter based homogenization is another homogenization
technique that relies on retrieving the index of refraction (n = n′+in′′)
and the constitutive impedance (z = z′ + iz′′) or equivalently the
effective constitutive parameters (ε = n/z and µ = nz) analytically
via reflection and transmission coefficients calculated from Transfer
Matrix simulations on a finite length of electromagnetic metamaterials.
Smith et al. [38] implemented this method and showed that it gives
an acceptable approximation but presents challenges in deciding upon
the sign and branch of the solution for negative sign parameters
(metamaterials). Improvement on this method was made later [39]
and S-parameter numerical retrieval approaches for lossy bi-anisotropic
media was introduced in [40]. Despite its versatility and ease of use,
S-parameter retrieval approaches do not provide significant physical
insight into the nature of the artificial material and the extracted
reflection and transmission coefficients are not easily connected to
analytical homogenization theories, which instead usually involve
analysis of the local-field and current distributions.

Other homogenization methods have been developed over the
years [41–44], but in general their scope of application is again limited
to the static limit or to very specific geometries. With the advances in
computing and analysis power, full wave simulations to solve Maxwell
equations can be conducted, hence quantities such as local electric and
magnetic fields, current distributions, and other quantities of interest
can be found easily. These advances resulted in the emergence of purely
numerical approaches to the homogenization of artificial structures
avoiding the limitations associated with prior analytic homogenization
models. One such technique based on averaging the local fields
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obtained from a full-wave electromagnetic simulation or analytical
calculation in order to determine the macroscopic fields was introduced
in [31]. Once having computed the macroscopic fields, the method
then determines the constitutive relationships between the macroscopic
fields, arriving at the effective electromagnetic parameters. There
is virtually no restriction on the contents of the unit cell, nor has
the unit cell necessarily be small in comparison with the wavelength.
Nevertheless, when the unit cell becomes more complicated by having
multiple elements, additional bands are found in the eigenmode
simulation making the analysis more difficult. Despite the difficulty,
this procedure can be considered general and rigorous, but also
suffers from important additional drawbacks. Namely, it relies on
the solution of an eigenvalue problem solution and is not useful to
retrieve the effective parameters either in frequency band-gaps or when
the constituent materials have losses. Recently, another method was
proposed to overcome these challenges in [29]. The proposed method
formulated the homogenization problem as a source driven problem
instead of relying on the solution of an eigenvalue problem and is
therefore able to take into account effects of frequency dispersion,
magneto-electric coupling, and spatial dispersion, even in frequency
band-gaps where the propagation of electromagnetic waves is not
allowed (band-gaps) or when the materials are lossy. However, the
proposed method relies on the frequency dependent Maxwell Equations
in a non-magnetic medium and therefore cannot be used to calculate
the effective parameters of arbitrary periodic magnetic metamaterials.

An alternative approach to the homogenization of artificial
structures avoiding the limitations associated with prior analytic
homogenization models, similar to the ‘averaging’ concept proposed
in [31], is the theory of a mathematical homogenization approach based
on the asymptotic expansion also known as two-scale homogenization,
which is a well established concept in the theory of partial differential
equations with rapidly oscillating periodic coefficients [45]. Its main
advantage is that the method is generalized enough and unlike
analytical techniques, can handle unit cells with inclusions of arbitrary
geometry and any number of phases with no additional computational
cost. Also, instead of formulating the problem as an eigenvalue
problem, two-scale homogenization works directly on the original form
of the governing equations and is therefore able to result in expressions
valid for effective constitutive tensors of both dielectric and magnetic
materials, which can be lossy.

Another advantage of the mathematical homogenization approach
is that it is generalized so that results apply to equations which
arise in various different applications such as porous media, elastic
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deformation, acoustics, material sciences, and heat conduction. The
rigor of the approach has been justified with extensive mathematical
theories including two-scale expansions, G-convergence, compensated
compactness, and two-scale convergence [26, 37, 45–51]. More
recently, many researchers have studied the application of two-scale
homogenization to Maxwell equations. It was demonstrated that
the macroscopic Maxwell equations can have significant differences
when compared to their microscopic counterpart turning instantaneous
material laws into constitutive laws with memory [26, 30, 47, 52–54]. A
more general case was considered in [48] where polarization of the
composite ingredient obeyed the Debye or Lorenz polarization laws
with relaxation. Complexity of the macroscopic constitutive laws [55]
and the structure of the macroscopic constitutive law was studied by
focusing on the time-harmonic Maxwell equations [49, 56, 57]. As one
of the pioneering work in the area of electromagnetic homogenization,
the mathematical theory of homogenization was used to calculate
the effective penetration depth in spatially periodic grids [58]. This,
for the first time, was based on homogenizing Maxwell equations
to obtain effective permittivity and permeability properties. The
process relied on finding averaged parameters over a unit cell in the
microscopic scale solving Maxwell equation via Finite Element Method.
Homogenization theory was also applied to a 3D Bean’s model for
superconductivity. In this study, the electric field and the surface
current over a “periodicity cell” with periodic boundary conditions was
solved for iteratively to pass from local Bean’s model to an increasingly
larger space scale [59]. However, majority of existing homogenization
studies based on asymptotic expansion do not involve numerical
calculations, and their main result is a mathematical theorem which
justifies the macroscopic harmonic Maxwell equations at a fixed low
frequency. One of the few examples, which involves the numerical
implementation is a study where asymptotic expansion based on
the periodic unfolding method was used to extract the effective
permittivity and effective conductivity based on the time-harmonic
Maxwell equations. Their numerical evaluation was demonstrated at
a fixed low frequency. Similarly, another study performed numerical
evaluation of the parameters within the framework of the two-scale
homogenization theory taking into account frequency dispersion [27].
In this paper, we further develop this research by applying the Finite
Element Method to solve numerically the homogenization problem
applying two-scale homogenization method formulated in [26, 45] to
Maxwell equations and extract the effective parameters of periodic
dielectric and magnetic materials, that can be in their most generalized
form lossy and are made of inclusions with arbitrary shapes and multi-
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phase material constituents. The numerical solution of the resulting
PDE is carried out using a commercial FEA based solver, namely
COMSOL Multiphysics, where the effective tensors are evaluated at
a single frequency, for both isotropic and anisotropic effective material
tensors with isotropic constituents. For the first time, the numerical
material model based on two-scale homogenization is then used to
synthesize the microstructure of electromagnetic material with desired
material matrices using formal design techniques such as topology
optimization.

The task of gathering information about the unit cell configura-
tion from the effective parameters is basically known as inverse homog-
enization. In contrast to the significant amount of work addressing the
theory of two-scale homogenization and quite a few focusing on the so-
lution of the direct problem for a variety of different disciplines, there
is limited work on inverse homogenization of electromagnetic materi-
als. One major reason for this has been the lack of generalized and
efficient inverse design tools that can be applied irrespectively of the
application under consideration. Another reason for limited work on
inverse homogenization is associated with lack of fabrication techniques
capable of manufacturing dielectric and magnetic materials with com-
plex spatial variation and multi-phase composition. Therefore, most
metamaterial design studies today are conducted either by intuition or
by varying only one or two design parameters. Cherkaev [60] applied
inverse homogenization to evaluate the effective thermal or hydraulic
conductivity of a random mixture of two different materials from the
known effective complex permittivity of the same mixture. More specif-
ically, measurements of the effective response of the random medium
for a range of different parameters of the applied fields were used to
reconstruct the geometric structural function of the mixture in the
Stieltjes integral representation. This function was then used in pre-
dicting the thermal and hydraulic conductivity of the structure. In
this paper, the aim is to address the inverse problem of constructing
the topology of the unit cell using a formal and generalized synthesis
tool instead of deferring information on an effective material param-
eter using information from another effective property. Towards that
goal, topology optimization methods present us with an ideal tool,
which has not been used towards exploring the full potential of artifi-
cial magneto-dielectrics for novel electromagnetic applications in liter-
ature. Its standard use and emergence in structural problems and its
application as an inverse design tool for unique materials such as nega-
tive Poisson’s ratio and negative thermal expansion coefficient [61, 62]
were addressed for which related background is discussed in the next
section.
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1.2. Topology Optimization

Simply stated, design via topology optimization implies the
determination of the best arrangement of material given a limited
volume of available space within a given domain so as to obtain
the optimal (electromagnetic) performance of the concept design [25].
The optimization process systematically and iteratively eliminates
and re-distributes material throughout the domain to obtain a
concept structure. An attractive aspect of topology optimization
is that it transforms the design of geometry into a material
distribution problem. When compared with more conventional
size and shape optimization, where the topology of the device is
assumed a priori and remains fixed, topology optimization offers
much more freedom in design. Consequently, the possibility of
topology design holds much greater promise because it dramatically
increases the available design degrees of freedom. Originally developed
within the Mechanical Engineering community for minimizing
compliance, the field has expanded significantly, addressing many
practical engineering problems including maximum stiffness, maximum
eigenvalues, optimum compliant mechanisms or piezoelectric actuators
and extreme material properties. Needless to mention it has been
widely accepted in industry, with several commercial software packages
incorporating such optimizations [63]. Comprehensive reviews on the
mechanical, structural and computational aspects have been given in
[64], the monographs by Bendsøe [65], Hassani and Hinton [66] and
the review article by Rozvany [67]. The mathematical aspects of the
concept are provided in [66].

More recently, the method was applied to electrostatic applica-
tions, photonic crystals and antenna design problems [25]. Topol-
ogy optimization was originally introduced to the electromagnetic
(EM) community using the Solid Isotropic Material with Penalization
(SIMP) [68] to design a jumping ring. Over the years, the application
area of topology optimization in EM was expanded from magneto-
static [57] or eddy current systems [58] to 3D linear electrostatic prob-
lems [59]. Similarly, topology optimization was also applied to non-
static electromagnetic applications. Two such applications refer to the
design of waveguide components and a low-loss planar photonic crys-
tal waveguide bend [69, 70] using topology optimization. Kiziltas et
al. [18] extended the study further by integrating topology optimiza-
tion based on SIMP method to full wave Finite Element Boundary In-
tegral, FE-BI analysis tools. Using topology optimization, a threefold
bandwidth enhancement of a miniature microstrip patch antenna was
achieved by designing the spatial distribution of its dielectric substrate.
Similarly, broadband dielectric resonator antennas were designed using



Progress In Electromagnetics Research, Vol. 115, 2011 351

finite-difference time-domain method as the analysis tool in a topology
optimization procedure focusing again on the spatial variation of the
dielectric material [71]. In other studies [69, 72], topology optimiza-
tion method was used to design two dimensional periodic structures
that suppress electromagnetic power flow. Improved performance was
achieved by considering the optimization of the layout of two materials
with different electric permittivity over the design domain.

In conclusion, literature reports only few applications of topology
optimization to non-static applications in electromagnetics [18, 69, 73].
Moreover, all existing studies on the topic are strictly focusing on the
performance enhancement of the device through designing the material
substrate instead of directly focusing on the design of the material
itself. The effort of targeting the material itself or specifically the
topology of its microstructure is by definition an inverse problem [74].
The solution of inverse problems is done iteratively. Historically, these
iterations were carried out by cut and try operations taking months
for each iteration or test. As a result, the design process relied
on experience and intuition and was impractical. Today an inverse
problem can be solved, at least in principle, by means of numerical
optimization of an objective function subject to prescribed constraints.
Such inverse problems based on topology optimization are addressed
in literature for non-electromagnetic materials with unique properties
such as negative Poisson’s ratio and thermal expansion coefficient [75].
In this paper, we propose to develop an inverse synthesis framework
by integrating topology optimization with an effective material model
based on two-scale homogenization of Maxwell equations suitable to
design materials with unique electromagnetic properties.

2. HOMOGENIZATION OF MAXWELL EQUATIONS

The derivation of the homogenized constitutive parameters represented
by the permittivity and permeability tensors of electromagnetic
materials is summarized in this section using Maxwell equations
and will serve as the material model in developing a formal
synthesis framework suitable for designing materials with desired
homogenized/effective material tensors, εeff and µeff . For more details
the reader is referred to [26, 45]. Theoretically, the material model
holds for the infinite wavelength limit but examples in literature [76]
show that this method practically holds for λ ≥ 10e, where e is the
average lattice constant.

If we assign a coordinate system x = [ X1 X2 X3 ]T in R3

space to define the domain of the composite material σ, then assuming
periodicity, the domain can be regarded as a collection of parallelepiped
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cells of identical dimensions eY1, eY2, and eY3 where Y1, Y2, and Y3

are the sides of the base cell in a local (microscopic) coordinate system
y = [ Y1 Y2 Y3 ]T = x/e and e is a small quantity representing the
lattice constant or the unit cell dimension. Therefore, any dependency
on y can be considered y-periodic for a fixed x in the macroscopic
level. Moreover, it is assumed that the form and composition of the
base cell varies in a smooth way with the macroscopic variable x.

We consider the boundary value problem associated with the
equation

rot (aerot (ue)) + ae
0ue = f in σ (1)

where ae and ae
0 are 3 × 3 matrices representing the constitutive

parameters that can vary with respect to space and frequency, rot
is the curl operator and f is a vector representing the source term, and
σ is the unit cell domain.

We will study the behavior of the vector variable ue as e
approaches zero. Let the operator working on the field quantity ue

called Ae be defined as follows

Ae = rot (aerot) + ae
0 (2)

Using the chain rule of differentiation for rewriting the operator
Ae and expanding the field vector u asymptotically as,

u = u0 (x,y) + e1u1 (x,y) + e2u2 (x,y) + . . . (3)

in the given boundary value problem proves that u0 is a function of x
alone and for simplicity is denoted by u

u0 = u0 (x) = u (4)

resulting in the following relation:

rotyae (rotyu1 + rotxu) = 0 (5)

Now, let us define a vector quantity w as:

w = ae (rotyu1 + rotxu) (6)

Averaging w over the problem domain σ, it becomes a function
of x alone because of the y-periodicity over the domain and can be
written with the aid of the averaging operator M or equivalently w̃ as

M (w) = w̃ = w̃ (x) (7)

Using (5), (6), (7) and noting that the rotation with respect to y
for a function of x alone is zero it can be deduced that there exists a
scalar function Ψ (x,y) the gradient of which is equal to the quantity
w − w̃ i.e., w − w̃ = −gradyΨ (x,y).
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Hence, (6) leads to:

−divy

(
(ae)−1 gradyΨ

)
= −divy

(
(ae)−1 w̃

)
(8)

The solution of the last equation is crucial for calculating the
effective parameters as will be shown later. The solution is simplified
by introducing a field quantity parameter θ according the following
relation.

Ψ = θ · w̃ (9)

Equation (8) can be rewritten using the last relation as

−divy

(
(ae)−1 gradyθ

j
)

= −divy

(
(ae)−1 ej

)
(10)

where ej is an identity vector in the corresponding axis. Equation (10)
is solved for each spatial dimension, i.e., for a three-dimensional
problem, j = 1, 2, 3.

Using (9), w can be written as

w =
(
I− gradyθ

)
w̃ (11)

where gradyθ for a three-dimensional problem is defined as the
following

gradyθ =




θ1
,y1

θ2
,y1

θ3
,y1

θ1
,y2

θ2
,y2

θ3
,y2

θ1
,y3

θ2
,y3

θ3
,y3


 (12)

Averaging (ae)−1 w in (6) yields

M
(
(ae)−1 w

)
= rotu (13)

Substituting (11) into the last equation gives:

M
(
(ae)−1 (

I− gradyθ
))

w̃ = rotu (14)

We will define a new operator denoting homogenization, H
working on (ae)−1 as follows

H
(
(ae)−1

)
= M

(
(ae)−1 (

I− gradyθ
))

(15)

And hence w̃ in (14) can be written in terms of the H operator as

w̃ = H
(
(ae)−1

)−1
rotu (16)

When the last equation is compared with (6), we conclude that
the operator H is the homogenization operator that yields the effective
property as w̃ and rotu in (16) are the average quantities of w and
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(rotyu1 + rotxu), respectively, in (6). Applying (14) on the operator
Ae given by (2), we get the homogenized operator as follows:

H (Ae) = rot
(
H

(
(ae)−1

)−1
rot

)
+ λ (17)

According to Theorem 11.4 in [45], if the operator ae
0 is anisotropic

which is a general case, the homogenized operator can be written as

H (Ae) = rot
(
H

(
(ae)−1

)−1
rot

)
+ H (ae

0) (18)

The wave equation is represented by

rot
(
µ−1rot (E)

)− ω2εE = −jωJi in σ (19)

where E and Ji are the electric field and the induced current, i.e.,
u and f , respectively. In the above derivations when (ae)−1 and ae

0
are replaced by the permeability and permittivity tensors µ and ε,
respectively, the homogenized permittivity and permeability tensors
can be finally obtained as follows:

H (µ) = M
(
µ

(
I− gradyθ

))
(20)

H (ε) = M
(
ε

(
I− gradyθ

))
(21)

3. NUMERICAL IMPLEMENTATION OF THE
HOMOGENIZED MATERIAL MODEL

In this section we make use of the homogenized form of the
permeability and the permittivity dyads given by (20) and (21) and
numerically evaluate the effective properties at the macro-scale level.
The operator M is a straightforward operator since it is simply a
volumetric averaging operator. Nevertheless, the intermediate field
θ requires careful consideration because it requires the solution of
a partial differential equation given by (10). Towards that goal, we
employ a finite element based simulation environment using COMSOL
Multiphysics and utilize its Coefficient Form module. The objective
is to solve this boundary value problem that is periodic in θ on
the boundaries of the unit cell. Figure 1 shows a representative
unit cell that is discretized into 9 × 9 discrete design cells filled
with material phases of four different dielectric constants, namely
ε ∈ {20, 70, 100, 140}.

The most general form of the PDE in the Coefficient Form module
of COMSOL is given as:

div (−c grad u− au + Y) + αu + βgrad u = f (22)
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Figure 1. A typical two-
dimensional periodic unit cell
composed of four constituents
with different permittivities ε ∈
{20, 70, 100, 140} distributed dis-
cretely in a 9 × 9 cell configura-
tion.

Figure 2. Intermediate θ2 field
distribution evaluated via Coeffi-
cient Form Module in COMSOL
Multiphysics for material distri-
bution of unit cell in Figure 1.

To transform the PDE to be solved for in (10) into the given form
in (30) α, β, and Y are assigned to zero matrices and c = ε.
This turns the coefficients of the PDE into discontinuous parameters
at the boundaries of two adjacent constituents inside the unit cell.
If the right hand side were (ae)−1 ej instead of −divy

(
(ae)−1 ej

)
,

then implementing (10) for spatially varying a would automatically
result in loading terms at jumps in a and hence it would not be
necessary to further manipulate. However, the right hand side of the
equation to be solved corresponds to the divergence of these discrete
coefficients of a that are equivalent to Dirac delta functions at the
constituents’ boundaries with infinite values. The integral of the right
hand side across a boundary equals the difference of the constituents’
coefficients of the domains sharing that boundary. However, the Dirac
delta distribution cannot be expressed as a function that COMSOL
Multiphysics is able to calculate numerically. Therefore, this challenge
is overcome by preserving the finite element method’s weak formulation
of the right hand side in its original form. The weak formulation
is obtained by multiplying the partial differential equation by an
approximate solution field, v, and manipulating it based on integration
by parts over the solution domain. The right hand side of the weak
formulation at the constituent boundaries is assigned the coefficient
difference value Φ multiplied by the approximate solution field v
directly as in the following integral expression:∫

σ

δv = Φv (23)
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Practically, we set the source term f on the right hand side of (22)
to zero and assign the constituent boundaries with corresponding
difference Φ, of the coefficients around the specified boundary.

Periodicity condition requires θ to be equal at opposite boundaries
of the unit cell, which completes the boundary value unit cell problem
defined in (10). Figure 2 depicts the evaluated intermediate θ field
distribution for the material distribution of the unit cell given in
Figure 1.

The field data is then post-processed in MATLAB and the
homogenized constitutive parameter is solved using Equation (21).
The homogenized permittivity tensor calculated for the unit cell

example given in Figure 1 is equal to εeff =
[

46.28 0.22
0.23 69.19

]
.

The mesh used for the analysis of the unit cell structure shown
in Figure 1 and Figure 2 is given below in Figure 3. A convergence
study was performed in order to determine the optimum mesh size.
Starting from a coarse mesh, 7 different discretizations as suggested
by the refinement strategy of COMSOL were used in performing
the convergence study. Each discretization is given a mesh case
number and the performance was measured using the corresponding
homogenized effective permittivity matrix 2-norm, the relative error
and number of triangular elements as given in Table 1 for all mesh
cases. Resulting convergence history in terms of relative error for all
mesh cases is plotted in Figure 4.

The relative error between two successive meshing cases was
calculated according to the following

Err (k) =
∑

i = 1, 2
j = 1, 2

((
εH

k (i, j)− εH
k+1 (i, j)

)
/εH

k (i, j) /4
)2×100 (24)

where k refers to the mesh case number and k + 1 is the mesh case
number of the finer mesh used in the comparison. Indices i and j

Table 1. Number of mesh elements, second norm of effective matrix,
and relative error between two successive cases.

Case number

(k)
1 2 3 4 5 6 7

Number of

mesh elements
744 978 1058 1168 1271 2720 7968

∥∥εH
k

∥∥
2

83.385 83.236 83.209 83.191 83.201 83.177 83.150

Err (k) 7.9394 1.9315 0.8261 0.1829 0.3876 0.3985 −
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Figure 3. Discretization used for
unit cell given in Figure 1 and
Figure 2.
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E
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]

Figure 4. Relative error vs.
Mesh Case Number (see Table 1)
for the unit cell given in Figure 1
and Figure 2.

refer to the effective permittivity matrix row and column number,
respectively. Case 4 with the corresponding discretization shown in
Figure 4 was chosen as the optimal mesh size as the relative error
dropped below 0.2% with 1168 elements. Therefore, this mesh is used
for all the experiments when analyzing the performance of this unit cell
structure with 9× 9 design cell discretization throughout the paper.

4. VALIDATION OF THE HOMOGENIZED MATERIAL
MODEL

The material model based on two-scale homogenization was introduced
and implemented in previous sections. In this section, results of
the proposed material model are compared with results obtained
from analytical mixing formulas for different inclusions and unit cell
configurations shown in Figure 6 and Figure 7.

Figure 5 depicts a square shaped unit cell with (a) square and
(b) circular inclusions, and (c) a honeycomb shaped unit cell with
a honeycomb inclusion with a volume fraction of 0.4. The volume
fraction is the ratio of the inclusion volume to the volume of the unit
cell.

Results obtained using mixing formulas such as the Maxwell-
Garnett and Bruggeman are depicted in Figure 6. Results belong
to unit cells with a host and inclusion isotropic permittivity of 1
and 80, respectively. Figure 7 presents results for the same mixing
formulas for unit cells with reverse host and inclusion permittivities.
Simulations to obtain homogenized material model results were run at
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a uniform volume fraction sampling with a stepsize of 0.025 ranging
from a volume fraction of 0, i.e., no inclusion, to 1 with no host
configuration for the square and the honeycomb cases, and from 0
to 0.775 volume fraction for the circular inclusion since higher volume
fractions are geometrically not attainable for circular inclusions. A
mesh convergence study similar to the one conducted in Section 3
yields 648, 688, 388 triangular mesh elements for the configurations
shown in Figures 5(a), (b), and (c), respectively. As the results show,
proposed material model shows a close behavior to the Maxwell-Garnet
curve for all volume fractions.

As a second validation, the numerical implementation of the
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Figure 5. A square shaped unit cell with (a) square and (b) circular
inclusions, and (c) a honeycomb shaped unit cell with a honeycomb
inclusion. Volume fraction of the inclusions is 0.4.
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Figure 6. Effective dielectric constant vs. volume fraction of different
inclusions in various unit cell configurations: Square in square,
honeycomb in honeycomb and circles in square unit cells. Comparison
is done with Maxwell Garnett, Bruggeman of host to inclusion ratio of
1-80.
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Figure 8. Comparison of proposed homogenized based method
against model proposed by Banks et al. and Maxwell-Garnett formula.

material model is simulated with fabricated designs in literature.
Figure 8 compares the proposed model with results in Banks et al. [48]
for unit cell configurations with host and circular inclusion and
dielectric constants of 2.7 and 1.003. Figure 9 compares results with
results of Zouhdi et al. for unit cells with host and square inclusions
and dielectric constants of 1 and 80, respectively. A perfect match of
the results as observed for both comparisons proves the reliability of
the homogenization based modeling tool.
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Figure 9. Comparison of proposed homogenized based method
against model proposed by Zouhdi et al. and Maxwell-Garnett formula.

5. MATERIAL SYNTHESIS FRAMEWORK

The material synthesis framework is constructed by integrating the
homogenized material model illustrated in the last section to a topology
optimization design procedure. The flowchart of the material synthesis
procedure is shown in Figure 10. The resulting topology optimization
problem is solved using a genetic algorithm optimizer known as
the Genetic Algorithm and Direct Search (GADS) toolbox available
in MATLAB. We here choose GA mainly due to the simplicity of
implementation. GA’s are only practical if the computational time
necessary for analysis, hence the time for the design study to converge
to an optimum is acceptable for practical purposes. We acknowledge
that GA’s typically require a very large number of function evaluations
but find that the computing time is acceptable for the design cases
presented here.

Regarding the choice of material constituents, four instead of two
material constituents were chosen among available shades to ensure a
more effective design search. More specifically, as the targeted material
matrices get more and more complicated (such as anisotropic and lossy)
it is natural that increased number of material constituents will allow
for a more effective search towards the optimum in the design space.
However, there is not always a need for more than two material shades
but the availability of four material constituents and the capability to
directly translate this capability to the design model should allow for a
more effective search and deliver a manufacturable design. This could
as well relate to a two material design. It will depend on the targeted
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Figure 10. Material synthesis flowchart.

material property values and matrix structure where the resulting
design could be as well comprised of two of the four available materials.
It is also noted that in terms of manufacturing capability there is no
additional challenge in producing a substrate with four vs. two ceramic
constituents using the Dry Powder Deposition technique proposed in
literature [77].

As a first step of the synthesis framework, the macrostructure,
which essentially corresponds to the dielectric material substrate, is
constructed using periodic repetition of the unit cells to be designed.
These unit cells are then discretized into design cells (see Figure 1).
A key aspect of the design method is that any structure or device,
here the unit cell, not known a priori, is represented by specifying
the material properties at every point of the fixed design domain.
For electromagnetic applications, these are the permittivity and
permeability values of the dielectric/magnetic material. In practice,
to specify the material properties in the design region, the design
space is discretized into material cells which are called design variable
cells throughout the paper. These design variable cells are different
from finite elements used in the analysis due to fabrication constraints
dictated by the grid size of the mold shown in Figure 17(a), which
is different from the finite element size constrained by the wavelength
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in the electromagnetic material. Actually, the most straightforward
image-based geometry representation is the “0/1” integer choice, where
the design domain is represented by either a void or a filled/solid
material and this was adopted in [78]. However, this formulation is not
well-posed mathematically [79]. It can be well-posed by allowing for the
design of materials with intermediate properties, which is also known as
relaxation. Such a topology optimization model would be more suitable
for the use of gradient based techniques. An example of a relaxed
topology optimization model is SIMP [80], which allows for modeling
of intermediate shades of the material but at the same time could drive
the search for “0/1” type final designs using penalization and filtering
techniques [25, 65]. Taking manufacturability constraints into account,
design cells are assigned discrete permittivity values of available
dielectric ceramics and act as the design variables of the problem, which
are initially assigned to given values. Given the dielectric/magnetic
material distribution of the unit cell, periodicity conditions are imposed
and the next step is to solve for the θ field distribution based on
the PDE in (10) using the Coefficient Form Module in COMSOL
Multiphysics as described in Section 3. The resulting field distribution
is subsequently post-processed by another in-house MATLAB program
to solve for the effective material parameters described in (15). The
task of the homogenized material model is completed (until the next
iteration) by transferring the evaluated effective constitutive material
tensors to the optimization module. The optimization module will then
seek for an improved distribution of the dielectric/magnetic material
property to achieve the targeted effective dielectric material tensor
by minimizing an appropriate mathematical norm representing this
objective.

A suitable objective function of the material synthesis problem
corresponds to minimizing the error norm (eeff ) between the desired
εH

des and calculated εH effective dielectric material tensors as

eeff =
∥∥εH − εH

des

∥∥ (25)

The objective function at hand is a complex implicit function of
the design variables, further justifying the choice of the optimization
solver to be GA in order to effectively locate its minimum.

If the solver was chosen as a gradient based optimizer, which is
known to converge to a local optimum evaluation of gradients would
require the effective implementation of the adjoint sensitivity method.
This analysis capability is not readily available in COMSOL, i.e., the
ready to use sensitivity module available in COMSOL does not work
on space dependent design variables such as the permittivity of each
FE. In theory, the gradient information can be computed using the
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adjoint method as was proposed and applied earlier to electromagnetic
systems [18] and was applied to fluid-flow problems in a COMSOL
environment [81]. It is noted that extra challenges rise when adopting
the work in [81] to electromagnetic problems since quantities/fields of
interest are frequency dependent and complex values and objectives
functions (effective material matrices) are implicit functions of design
variables, hence the adjoint sensitivity analysis obeys complex variable
differentiation rules possibly taking also the frequency dependency into
account.

The chosen Genetic Algorithm and Direct Search (GADS) toolbox
here is available in MATLAB and includes routines for solving genetic
optimization problems as well as other heuristic methods such as
direct search and simulated annealing. The genetic algorithm is a
method for solving optimization problems that is based on natural
selection, the process that drives biological evolution. It is chosen
here to solve the posed topology optimization problem. It repeatedly
modifies a population of individual solutions, which correspond here
to the microstructures of the dielectric topology. At each step, the
genetic algorithm selects individuals at random from the current
population to be parents and uses them to produce children for the
next generation. Over successive generations, the population “evolves”
toward an optimal solution. One can apply the genetic algorithm
to solve a variety of optimization problems that are not well suited
for standard optimization algorithms, including problems in which
the objective function is discontinuous, non-differentiable, stochastic,
or highly nonlinear where the design search typically takes much
longer due to high number of generations needed for convergence.
However, in the examples presented here, converged results using GA
are obtained in less than a day leading to manufacturable designs
in practical timespans despite the high number of generations. An
optimization search in the material synthesis framework based on
GADS is practically conducted by calling the function ‘ga’, which in
its simplest form is a MATLAB statement given as follows:

[x fval] = ga(@fitnessfun, nvars, options) (26)

where @fitnessfun is the function to be minimized and corresponds to
a MATLAB file which evaluates (25), nvars is the number of design
variables and options is a structure that stores the genetic algorithm
tuning parameters. The integration between the homogenized material
module and the optimizer takes place via the fitness function in
MATLAB. More specifically, the fitness function @fitnessfun calls a
Matlab m-file that takes the design variable values from a predefined
set that represent the constituents’ constitutive parameters of the
discretized design cells. The fitness function, then, prepares the
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COMSOL model for the solution of (10) by updating the PDE
coefficients (ae)−1 and the weak form, Φ, given by (23), of the
boundary conditions between the design cells of the right hand side
of (10). These evaluations are repeated at each generation/iteration
for each individual, i.e., for different material distributions of the unit
cell until the optimization algorithm converges to an optimal material
distribution that matches the desired effective material tensor. In the
examples presented in this paper, the genetic algorithm numerically
converges when the average change in the fitness value is less than a
chosen tolerance value of 10−6. To ensure an effective search within a
diverse population, a number of optimization parameters need to be
tuned. For the proposed material synthesis framework with chosen
design cells with 9 × 9 = 81 design variables, a typical list and
corresponding values of tuned genetic algorithm parameters are as
follows: population size = 80; selection strategy function = remainder;
scattered crossover function; scale parameter value = 0.75 and shrink
mutation parameter value = 0.5.

6. VALIDATION AND DESIGN EXAMPLES

In this section five design examples are demonstrated including an
initial sanity check which proves that the material synthesis framework
indeed has the capabilities to design electromagnetic materials with
both desired isotropic and anisotropic constitutive parameters from
isotropic constituents. Although the proposed framework is based on
a material model that can deal with both permittivity and permeability
tensors, for fabrication purposes, the design examples presented in the
next section focus only on the dielectric permittivity tensor. More
specifically, a novel fabrication process capable of producing monolithic
dielectric substrates made of spatially varying dielectrics was earlier
proposed in [82]. This technique has been successfully employed to
produce miniaturized antenna substrates using commercially available
MCT ceramic powders with similar cofiring characteristics and low loss
(tan (δ) = 0.001). The dielectric constant values of available ceramic
materials correspond to ε ∈ {20, 70, 100, 140} and are chosen as the
base dielectric phases to achieve desired dielectric non-lossy tensor
matrices in the presented examples.

6.1. Design of Isotropic Dielectric Material Tensor with
Homogeneous Phase

The isotropic design case presented here is intended to validate the
design framework by targeting an isotropic permittivity εH

des = 70 using
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two material shades of ε ∈ {20, 70}. The dielectric constituents chosen
include the desired homogeneous phase itself, hence this example
serves as a sanity check for the validity of the inverse synthesis
framework. The unit cell is discretized into 20 × 20 design variable
cells that will be occupied by the material constituents. By following
the proposed material synthesis flowchart in Figure 10, the genetic
algorithm converges to the correct näıve solution εH = 70 in 357
generations. The genetic algorithm tuning parameters for the examples
presented in this paper are shown in Table 2. Figure 11 depicts the
convergence history of the GA optimization process for this example.

Table 2. Genetic algorithm tuning parameters of the substrate design
examples.

Design Example

Isotropic

homogeneous

Isotropic

inhomogeneous
Anisotropic

Population size 60 20 80

Elite count 2 2 2

Crossover fraction 0.9 0.9 0.9

Maximum generations 500 500 500

Selection function remainder remainder remainder

Crossover function scattered scattered scattered

Mutation func. Scale 0.75 0.75 0.75

Shrink 0.5 0.5 0.5

6.2. Design of Isotropic Dielectric Material Tensor with
Inhomogeneous Phase

In the second design case conducted for the validation of the design
framework, the same targeted isotropic permittivity of the first
example, namely an εH

des = 70 is desired using constituents with
dielectric values ε ∈ {1, 100}, where this time the target phase
dielectric constant of 70 is excluded. A mesh convergence study similar
to the one in Section 3 applied on this new 20×20 design configuration
yields 1600 triangular elements and is therefore chosen for both 20×20
design variable configurations in Figure 13 and Figure 15 below. For
this example, the optimum design converged in 226 iterations as shown
in the convergence history in Figure 12. The genetic algorithm tuning
parameters used are given in Table 2. The objective function used in
the optimization procedure according to relation (23) returns an error
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Figure 11. GA convergence
history of a sanity check case of
a unit cell with 20 × 20 design
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des =
70 returns a material tensor with

εH =
[

70.01 −0.02
−0.01 70.00

]
.
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Figure 13. Resulting optimum material design of the example in
Figure 12. Black and white shades are phases with dielectric constants
1 and 100, respectively.

norm of 0.020908 evaluated for the optimum design with a homogenized

dielectric tensor of εH =
[

70.01 −0.02
−0.01 70.00

]
. The resulting optimum

material design distribution is shown in Figure 13. The volume fraction
of the inclusion with ε = 100 returns a perfect match with the
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Maxwell-Garnet mixture formula both predicting a value of 69.94 for
the dielectric constant value.

6.3. Design of Anisotropic Dielectric Material Tensor

As a third example, an anisotropic dielectric material tensor is targeted
and the material synthesis flowchart is followed in this validation

example for a desired permittivity tensor of εH
des =

[
45 0
0 70

]
.

The design unit cell in this example is discretized into 20 × 20
and 9 × 9 design variable cells. The design variables are selected
from a subset of four material constituents with dielectric constant
values of ε ∈ {20, 70, 100, 140}. The genetic algorithm returns an

optimum effective dielectric material tensor of εH =
[

45.52 0.00
0.03 69.47

]

for the 20 × 20 design cells case and an error norm of 0.54. For
the same targeted anisotropic dielectric tensor, the 9 × 9 discretized
unit cell problem converged to an effective dielectric tensor of εH =[

45.11 0.09
0.10 69.88

]
resulting in an error norm of 0.15 evaluated according

to Equation (25). The convergence history for both problem solutions
is depicted in Figure 14. As expected, the 9× 9 configuration with 81
design variables converges faster than the 20× 20 design configuration
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Figure 14. Genetic algorithm convergence history of a unit cell
discretized with 20 × 20 and 9 × 9 design variable cells. Material
constituents with ε ∈ {20, 70, 100, 140} and a desired effective

anisotropic dielectric tensor εH
des =

[
45 0
0 70

]
returns a homogenized

substrate with εH =
[

45.52 0.00
0.03 69.47

]
and εH =

[
45.11 0.09
0.10 69.88

]
for

the 20× 20 and 9× 9 design cells problems, respectively.
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Figure 15. Optimal material distribution of the unit cell design with
20× 20 design cells. The dielectric constants of the used constituents
are 20, 70, 100, and 140.
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Figure 16. (a) Optimal material distribution of the unit cell design
with 9× 9 design cells and (b) a 3× 3 array of the design unit cell to
be fabricated.

with 400 design variable cells (84 vs. 206 generations, respectively)
because it has less number of design variables and consequently spans
much smaller design search space. Nevertheless, the small error norm
of the optimum design of the 9 × 9 cell proves that this number of
discrete cells is enough to fulfill the design target requirements. The
optimum material design obtained using the 20 × 20 design cells is
shown in Figure 15. The material distribution of the optimum design
using the 9×9 design cells is shown in Figure 16(a) as a single unit cell
and its 3 × 3 array configuration in Figure 16(b) that was also tested
for manufacturability. More specifically, a 3 × 3 array configuration
obtained using a repetition of the unit cell design resulting from the
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(a) (b)

Figure 17. (a) Automated dispensing machine for DPD in action
when depositing available ceramic powder constituents into desired
material distribution for the 3×3 array of the unit cell discretized into
9× 9 design variable configuration shown in Figure 16(a) resulting in
(b) a desired deposited substrate.

first scheme is fabricated as shown in Figure 17 using Dry Powder
Deposition (DPD) technique and commercial MCT ceramic powders
(Trans-Tech Inc.) [77]. The resulting fabricated substrate in its pressed
form is shown in Figure 16(b). Future work comprises using the
substrate as part of a device design study such as an antenna design
and testing the device upon which the substrate performance can be
evaluated. It is finally noted that a relative convergence analysis
for the homogenized dielectric constant matrices with different mesh
sizes clearly indicates that the discretization employed in the analysis
is enough and leads to reliable simulation results. Similar material
topologies to the design example here with higher contrast material
(with dielectric constituents of permittivity of 100 and 1) were obtained
as a result of a previous design study for which simulations and
experimental results agreed very well [18]. Therefore, designs obtained
in this example with such a high-contrast material substrate and
the discretization employed are expected to give reliable experimental
results.

It is noted that the optimum number of triangular mesh elements
used for the 9 × 9 discretization configuration is 1168 based on the
convergence study conducted in Section 3 above.

6.4. Design of Anisotropic Dielectric Material Tensor with
Non-zero Off-diagonal Terms

To demonstrate the ability of the proposed methodology to design
dielectric tensors with off-diagonal elements a fourth design example
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is conducted. In this example, the target is to design a material with
an anisotropic material tensor that has the following parametric form.

ε = ε0

[
εa + δ cos 2φ δ sin 2φ

δ sin 2φ εa − δ cos 2φ

]
(27)

where φ is the misalignment angle with the principal axes. Typical
values of εa and δ are 125 and 40, respectively. This corresponds

to a desired matrix value of ε =
[

159.64 −20
−20 90.36

]
which basically

represents a substrate with dielectric tensor value of ε rotated by
15 deg.

The design unit cell is discretized into 9 × 9 variable cells. The
design variables are selected from a subset of four material shades
with different dielectric constant values of ε ∈ {20, 70, 140, 240}. The
optimization algorithm using the proposed material model converges
when the average change in the fitness value is less than a set
tolerance value of 10−6. As a result, the application of the proposed
synthesis framework returned an effective dielectric tensor of εH =[

155.80 −14.68
−14.74 94.24

]
with an error norm of 6.5825. It is noted that

the error norm (calculated according to (25)) of the ‘optimal’ design is
relatively large. Hence, re-investigating the resulting design topologies
given by Figure 18(a), the design cell size seems to be too large, i.e.,
the design domain is not well represented with the specified number
of design cells, which needs to be increased in order to reach an
optimal design. In order to overcome this problem, the number of
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Figure 18. Optimal material distribution of the unit cell design using
dielectric shades of ε ∈ {20, 70, 140, 240} using (a) 9 × 9 design cells
and (b) 18× 18 design cells.
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Figure 19. Genetic algorithm convergence history of the design with
non-zero dielectric constant off-diagonal elements via 9×9 design cells
(blue) and 18× 18 design cells (black).

design cells was increased to 18× 18 and the optimization process was
restarted with its initial generation being the last generation of the
earlier algorithm that resulted in the design shown in Figure 18(b). A
mesh convergence study of this new 18×18 discretization configuration
similar to that in Section 3 reveals an optimum value of 1296 triangular
elements, which is used here. The optimum element number for the
9 × 9 case is 1168. The design with finer design cells converged to an

effective dielectric tensor of εH =
[

159.55 −19.96
−19.97 90.37

]
with an error

norm of 0.10. Convergence histories of both design cases are depicted
in Figure 19.

6.5. Design of Anisotropic Dielectric Material Tensor with
Loss

Another important feature of the proposed synthesis frame-
work is its ability to handle loss. As a demonstration of
this capability, a design example targeting a permittivity ma-

trix with ε =
[

60− j0.06 0
0 70− j0.08

]
is conducted us-

ing constituents with the following permittivity values: ε ∈
{ 20− j0.012, 70− j0.07, 100− j0.120, 140− j0.196} . It is noted that
the loss values are chosen to mimic expected behavior of available
material for which a maximum loss tangent value of 0.001 is cited
and the actual loss is expected to increase for the ceramic materi-
als with increasing dielectric permittivity value. Use of the proposed
synthesis framework resulted in an optimized material tensor with
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ε =
[

60.4817− j0.0600 0.2825− j0.0004
0.2489− j0.0003 70.4191− j0.0791

]
where convergence was

obtained in 51 generations tracing a convergence history shown in Fig-
ure 20. It is noted that the optimum number of the triangular mesh
elements used here is 1168 elements as previously shown in Section 3
above. The resulting optimal material distribution for the unit cell is
shown in Figure 21.
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Figure 20. Genetic algorithm convergence history of the design with
non-zero dielectric constant off-diagonal elements via 9×9 design cells.
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7. CONCLUSIONS

A material synthesis framework based on topology optimization
is proposed and applied for the first time towards designing the
unit cell of periodic electromagnetic materials with desired dielectric
tensors from readily available off-the-shelf constituents obtained from
isotropic ceramic powders. The proposed framework is based on
the integration of a robust effective material model derived using
homogenization theory and asymptotic expansion applied to Maxwell
equations. Therefore, it can characterize effects of anisotropy and
loss in electromagnetic materials with periodic unit cells of arbitrary
geometries and multi-phases much smaller than the wavelength. The
numerical implementation of the effective material model at a specific
frequency is conducted on a MATLAB interface using FEA based
simulations in COMSOL Multiphysics for the solution of the resulting
PDE. The results obtained for arbitrary geometries and material
inclusions are validated with results from literature. The numerical
implementation of the material synthesis framework is based on solving
the topology optimization problem using GADS toolbox in MATLAB.
To demonstrate the design capabilities of the proposed framework, it
is applied to five design examples where periodic dielectric materials
with desired isotropic anisotropic and lossy permittivity tensors are
targeted. The resulting anisotropic material distribution is also
fabricated to demonstrate its manufacturability. Results show that the
homogenization technique integrated to topology optimization is able
to design non-intuitive material compositions from scratch with desired
electromagnetic dielectric properties. The validity and versatility of
the proposed framework should allow for the automated synthesis of
desired unique material properties for applications such as Magnetic
Photonic Crystals, cloaking materials and left-handed media. By
allowing for remarkable device performance improvements not possible
via intuitive material designs, this capability is expected to make a
significant impact in many critical applications including antennas,
quasi-optical devices and beam formers.
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