# On Generalized $q$-Poly-Bernoulli Numbers and Polynomials 

Secil Bilgic ${ }^{\text {a }}$, Veli Kurt ${ }^{\text {b }}$<br>${ }^{a}$ Department of Computer Programming (Distance Education), Anadolu Bil Vocational School, Istanbul Aydin University<br>${ }^{b}$ Akdeniz University, Antalya, TR-07058, Turkey


#### Abstract

Many mathematicians in ([1], [2], [5], [14], [20]) introduced and investigated the generalized $q$-Bernoulli numbers and polynomials and the generalized $q$-Euler numbers and polynomials and the generalized $q$-Gennochi numbers and polynomials.

Mahmudov ([15], [16]) considered and investigated the $q$-Bernoulli polynomials $\mathcal{B}_{n, q}^{(\alpha)}(x, y)$ in $x, y$ of order $\alpha$ and the $q$-Euler polynomials $\mathcal{E}_{n, q}^{(\alpha)}(x, y)$ in $x, y$ of order $\alpha$. In this work, we define generalized $q$-poly-Bernoulli polynomials $\mathcal{B}_{n, q}^{[k, \alpha]}(x, y)$ in $x, y$ of order $\alpha$. We give new relations between the generalized $q$-poly-Bernoulli polynomials $\mathcal{B}_{n, q}^{[k, \alpha]}(x, y)$ in $x, y$ of order $\alpha$ and the generalized $q$-poly-Euler polynomials $\mathcal{E}_{n, q}^{[k, \alpha]}(x, y)$ in $x, y$ of order $\alpha$ and the $q$-Stirling numbers of the second kind $S_{2, q}(n, k)$.


## 1. Introduction, Definitions and Notations

As usual, throughout this paper, $\mathbb{N}$ denotes the set of natural numbers, $\mathbb{N}_{0}$ denotes the set of nonnegative integers, $\mathbb{R}$ denotes the set of real numbers and $\mathbb{C}$ denotes the set of complex numbers.

In the usual notations, let $B_{n}(x)$ and $E_{n}(x)$ denote respectively, the classical Bernoulli polynomials and the classical Euler polynomials in $x$ defined by the generating functions, respectively

$$
\begin{equation*}
\sum_{n=0}^{\infty} B_{n}(x) \frac{t^{n}}{n!}=\frac{t}{e^{t}-1} e^{x t},|t|<2 \pi \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} E_{n}(x) \frac{t^{n}}{n!}=\frac{2}{e^{t}+1} e^{x t},|t|<\pi \tag{2}
\end{equation*}
$$

Also, let

$$
B_{n}(0):=B_{n} \text { and } E_{n}(0):=E_{n}
$$

[^0]where $B_{n}$ and $E_{n}$ are respectively, the Bernoulli numbers and the Euler numbers.
$k \in \mathbb{Z}$ and $k \geq 1$, then $k$-th polylogarithm is defined by ([3], [7], [13]) as
\[

$$
\begin{equation*}
L i_{k}(z)=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{k}} \tag{3}
\end{equation*}
$$

\]

This function is convergent for $|z|<1$, when $k=1$,

$$
\begin{equation*}
L i_{1}(z)=-\log (1-z) \tag{4}
\end{equation*}
$$

[15]. The $q$-numbers and $q$-factorial are defined by

$$
\begin{aligned}
{[n]_{q} } & =\frac{1-q^{n}}{1-q}, q \neq 1 \\
{[n]_{q}!} & =[n]_{q}[n-1]_{q}[n-2]_{q} \ldots[1]_{q}, n \in \mathbb{N}, q \in \mathbb{Z}
\end{aligned}
$$

respectively, where $[0]_{q}!=1$. The $q$-binomial coefficients are defined by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{[n]_{q}}{[k]_{q}![n-k]_{q}!}, 0 \leq k \leq n
$$

The $q$-power basis is defined by

$$
(x+y)_{q}^{n}= \begin{cases}(x+y)(x+q y) \ldots\left(x+q^{n-1} y\right), & n=1,2, \ldots \\ 1, & n=0\end{cases}
$$

From above equality, we get

$$
(x+y)_{q}^{n}=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} x^{k} y^{n-k}
$$

The $q$-exponential functions are given by

$$
e_{q}(z)=\sum_{n=0}^{\infty} \frac{z^{n}}{[n]_{q}!}=\prod_{k=0}^{\infty} \frac{1}{\left(1-(1-q) q^{k} z\right)}, 0<|q|<1,|z|<\frac{1}{|1-q|}
$$

and

$$
E_{q}(z)=\sum_{n=0}^{\infty} q^{\binom{n}{2}} \frac{z^{n}}{[n]_{q}!}=\prod_{k=0}^{\infty}\left(1+(1-q) q^{k} z\right), 0<|q|<1, z \in \mathbb{C}
$$

From here, we easily see that $e_{q}(z) E_{q}(-z)=1$. The above $q$-notation can be found in ([8], [13]). Mahmudov in ([15], [16]) defined the $q$-Bernoulli polynomials $\mathcal{B}_{n, q}^{(\alpha)}(x, y)$ in $x, y$ of order $\alpha$ and the $q$-Euler polynomials $\mathcal{E}_{n, q}^{(\alpha)}(x, y)$ in $x, y$ of order $\alpha$, respectively

$$
\begin{equation*}
\sum_{n=0}^{\infty} \mathcal{B}_{n, q}^{(\alpha)}(x, y) \frac{t^{n}}{[n]_{q}!}=\left(\frac{t}{e_{q}(t)-1}\right)^{\alpha} e_{q}(t x) E_{q}(t y),|t|<2 \pi \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} \mathcal{E}_{n, q}^{(\alpha)}(x, y) \frac{t^{n}}{[n]_{q}!}=\left(\frac{2}{e_{q}(t)+1}\right)^{\alpha} e_{q}(t x) E_{q}(t y),|t|<\pi \tag{6}
\end{equation*}
$$

where $q \in \mathbb{C}, \alpha \in \mathbb{N}_{0}, 0<|q|<1$. It is obvious that

$$
\begin{aligned}
& \mathcal{B}_{n, q}^{(\alpha)}:=\mathcal{B}_{n, q}^{(\alpha)}(0,0), \lim _{q \rightarrow 1^{-}} \mathcal{B}_{n, q}^{(\alpha)}(x, y)=B_{n}^{(\alpha)}(x+y), \lim _{q \rightarrow 1^{-}} \mathcal{B}_{n, q}^{(\alpha)}=B_{n}^{(\alpha)} \\
& \mathcal{E}_{n, q}^{(\alpha)}:=\mathcal{E}_{n, q}^{(\alpha)}(0,0), \lim _{q \rightarrow 1^{-}} \mathcal{E}_{n, q}^{(\alpha)}(x, y)=E_{n}^{(\alpha)}(x+y), \lim _{q \rightarrow 1^{-}} \mathcal{E}_{n, q}^{(\alpha)}=E_{n}^{(\alpha)}
\end{aligned}
$$

Carlitz defined in [6] the $q$-Stirling numbers of the second kind $S_{2, q}(n, k)$ as

$$
\begin{equation*}
\sum_{m=0}^{\infty} S_{2, q}(m, k) \frac{t^{m}}{[m]_{q}!}=\frac{\left(e_{q}(t)-1\right)^{k}}{[k]_{q}!} \tag{7}
\end{equation*}
$$

[15]. D. Kim et al. in [11] and Bayad et al. in [3] defined the poly-Bernoulli polynomials by the following generating function

$$
\begin{equation*}
\sum_{n=0}^{\infty} B_{n}^{(k)}(x) \frac{t^{n}}{n!}=\frac{L i_{k}\left(1-e^{-t}\right)}{e^{t}-1} e^{x t} . \tag{8}
\end{equation*}
$$

Hamahata in [7] defined the poly-Euler polynomials by,

$$
\begin{equation*}
\sum_{n=0}^{\infty} E_{n}^{(k)}(x) \frac{t^{n}}{n!}=\frac{2 L i_{k}\left(1-e^{-t}\right)}{t\left(e^{t}+1\right)} e^{x t} . \tag{9}
\end{equation*}
$$

For $k=1$, from (4). We get $B_{n}^{(1)}(x)=B_{n}(x)$ and $E_{n}^{(1)}(x)=E_{n}(x)$.
By this motivation, we define the generalized $q$-poly-Bernoulli polynomials $\mathcal{B}_{n, q}^{[k, \alpha]}(x, y)$ in $x, y$ of order $\alpha$ and the generalized $q$-poly-Euler polynomials $\mathcal{E}_{n, q}^{[k, \alpha]}(x, y)$ in $x, y$ of order $\alpha$ as the following generating functions, respectively

$$
\begin{equation*}
\sum_{n=0}^{\infty} \mathcal{B}_{n, q}^{[k, \alpha]}(x, y) \frac{t^{n}}{[n]_{q}!}=\left(\frac{L i_{k}\left(1-e^{-t}\right)}{e_{q}(t)-1}\right)^{\alpha} e_{q}(x t) E_{q}(t y) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} \mathcal{E}_{n, q}^{[k, \alpha]}(x, y) \frac{t^{n}}{[n]_{q}!}=\left(\frac{2 L i_{k}\left(1-e^{-t}\right)}{t\left(e_{q}(t)+1\right)}\right)^{\alpha} e_{q}(x t) E_{q}(t y) . \tag{11}
\end{equation*}
$$

For $k=1$, from $L i_{1}(x)=-\log (1-x)$. The equations (10) and (11) reduces to (5) and (6) respectively.
Srivastava in [20] and Srivastava et al. in [21] gave basic knowledge the Bernoulli polynomials, the Euler polynomials and $q$-Bernoulli polynomials and $q$-Euler polynomials.

Kim et al. in [11] introduced the poly-Bernoullli polynomials, Luo in [14] and Sadjang in [17] and Simsek in [18] considered and gave some relations the $q$-Bernoulli polynomials and the Stirling numbers of the second kind.

Carlitz in [5] gave some properties of $q$-Bernoulli polynomials. Mahmudov in ([15], [16]) considered and investigated some recurrences relations between $q$-Bernoulli polynomials $\mathcal{B}_{n, q}^{(\alpha)}(x, y)$ in $x, y$ of order $\alpha$ and $q$-Euler polynomials $\mathcal{E}_{n, q}^{(a)}(x, y)$ in $x, y$ of order $\alpha$.

Firstly, Kaneko in [9] defined poly-Bernoulli numbers. Bayat et al. in [3] and Hamahata in [7] gave some identities for the poly-Bernoulli polynomials and the poly-Euler polynomials. Kim et al. in [10] and Kurt in [12] gave some relations and identities for the $q$-Bernoulli polynomials $\mathcal{B}_{n, q}^{(\alpha)}(x, y)$ in $x, y$ of order $\alpha$.
2. Explicit Relations for The Generalized $q$-Poly-Bernoulli Polynomials $\mathcal{B}_{n, q}^{[k, \alpha]}(x, y)$ in $x, y$ of order $\alpha$

In this section, we give some identities and relations for the generalized $q$-poly-Bernoullli polynomials $\mathcal{B}_{n, q}^{[k, \alpha]}(x, y)$ in $x, y$ of order $\alpha$. Also, we prove the closed theorem between the generalized $q$-poly-Bernoulli polynomials $\mathcal{B}_{n, q}^{[k, \alpha]}(x, y)$ and the $q$-Stirling numbers of the second kind $S_{2, q}(n, k)$.

Theorem 2.1. The generalized q-poly-Bernoulli polynomials $\mathcal{B}_{n, q}^{[k, \alpha]}(x, y)$ in $x, y$ of order $\alpha$ satisfy the following relations.

$$
\begin{aligned}
& \mathcal{B}_{n, q}^{[k, \alpha]}(x, y)=\sum_{l=0}^{n}\left[\begin{array}{c}
n \\
l
\end{array}\right]_{q}(x+y)_{q}^{l} \mathcal{B}_{n-l, q}^{[k, \alpha]} . \\
& \mathcal{B}_{n, q}^{[k, \alpha]}(x, y)=\sum_{l=0}^{n}\left[\begin{array}{c}
n \\
l
\end{array}\right]_{q} \mathcal{B}_{n-l, q}^{[k, \alpha]}(x, 0) q^{\left(\frac{l}{2}\right)} y^{l} . \\
& \mathcal{B}_{n, q}^{[k, \alpha]}(x, y)=\sum_{l=0}^{n}\left[\begin{array}{c}
n \\
l
\end{array}\right]_{q} \mathcal{B}_{n-l, q}^{[k, \alpha]}(0, y) x^{l} .
\end{aligned}
$$

Proof. We can see easily from (10).
Theorem 2.2. There is the following relation between the $q$-poly-Bernoulli polynomials $\mathcal{B}_{n, q}^{[k, \alpha]}(x, y)$ and the $q$-Stirling numbers of the second kind $S_{2, q}(n, k)$

$$
\begin{align*}
& \sum_{l=0}^{n}\binom{n}{l} \mathcal{B}_{n-l}^{[k, 1]}(x+y)-\mathcal{B}_{n}^{[k, 1]}(x+y)  \tag{12}\\
= & \sum_{m=0}^{\infty} \frac{(-1)^{m+n-l}(m+1)!}{(m+1)^{k}} S_{2}(n-l, m+1) .
\end{align*}
$$

Proof. By (7) and (10), for $\alpha=1$ and $q \rightarrow 1^{-}$, we have (12).
Theorem 2.3. The following relation holds true

$$
\begin{equation*}
n \mathcal{B}_{n-1}^{[k, 1]}(x+y)=\sum_{m=0}^{\infty} \sum_{l=0}^{n}\binom{n}{l} \mathcal{B}_{l}(x+y) \frac{(-1)^{m+n-l}}{(m+1)^{k}}(m+1)!S_{2}(n-l, m+1) . \tag{13}
\end{equation*}
$$

Proof. By (10) for $\alpha=1$, by using (7), we write as

$$
\begin{aligned}
\sum_{n=0}^{\infty} \mathcal{B}_{n, q}^{[k, 1]}(x, y) \frac{t^{n}}{[n]_{q}!}= & \frac{1}{t} \frac{t e_{q}(x t) E_{q}(t y)}{e_{q}(t)-1} L i_{k}\left(1-e^{-t}\right) \\
\sum_{n=0}^{\infty}[n]_{q} \mathcal{B}_{n-1, q}^{[k, 1]}(x, y) \frac{t^{n}}{[n]_{q}!}= & \left\{\sum_{l=0}^{\infty} \mathcal{B}_{l, q}(x, y) \frac{t^{l}}{[l]_{q}!}\right. \\
& \left.\sum_{m=0}^{\infty} \frac{(-1)^{m+1}(m+1)!}{(m+1)^{k}} S_{2, q}(p, m+1)(-1)^{p+1} \frac{t^{p}}{p!}\right\}
\end{aligned}
$$

We take to limit $q \rightarrow 1^{-}$both sides and by using the Cauchy product, we have (13).
Theorem 2.4 (Closed Formula). The following relation holds true

$$
\begin{equation*}
\mathcal{B}_{n}^{[-k, 1]}(x+y)=\sum_{j=0}^{\min (n, k)}(j!)^{2} S_{2}(n, j, x+y) S_{2}(k, j, 1) \tag{14}
\end{equation*}
$$

Proof. By replacing $k$ by $-k$ in (10), for $\alpha=1$, we get

$$
\sum_{n=0}^{\infty} \mathcal{B}_{n, q}^{[-k, 1]}(x, y) \frac{t^{n}}{[n]_{q}!}=\sum_{m=0}^{\infty}(m+1)^{k}\left(1-e^{-t}\right)^{m+1} \frac{e_{q}(t x) E_{q}(t y)}{e_{q}(t)-1}
$$

we take to limit $q \rightarrow 1^{-}$in both sides, we have

$$
\sum_{n=0}^{\infty} \mathcal{B}_{n}^{[-k, 1]}(x+y) \frac{t^{n}}{n!}=\sum_{m=0}^{\infty}(m+1)^{k}\left(1-e^{-t}\right)^{m+1} \frac{e^{x t+t y}}{e^{t}-1}
$$

From here, we write as

$$
\begin{align*}
\sum_{k=0}^{\infty} \sum_{n=0}^{\infty} \mathcal{B}_{n}^{[-k, 1]}(x+y) \frac{t^{n}}{n!} \frac{u^{k}}{k!} & =\sum_{k=0}^{\infty} \frac{1}{e^{t}-1} \sum_{m=0}^{\infty}(m+1)^{k}\left(1-e^{-t}\right)^{m+1} e^{x t+t y} \frac{u^{k}}{k!} \\
& =\frac{1}{e^{t}-1} \sum_{m=0}^{\infty}\left(1-e^{-t}\right)^{m+1} e^{x t+t y} e^{(m+1) u} \\
& =\frac{e^{x t+t y}\left(1-e^{-t}\right) e^{u}}{e^{t}-1} \sum_{m=0}^{\infty}\left(\left(1-e^{-t}\right) e^{u}\right)^{m} \tag{15}
\end{align*}
$$

Carlitz et al in [6] defined the weighted Stirling numbers of the second is defined kind as

$$
\begin{equation*}
\frac{e^{x t}\left(e^{t}-1\right)^{k}}{k!}=\sum_{n=0}^{\infty} S_{2}(n, k, x) \frac{t^{n}}{n!} \tag{16}
\end{equation*}
$$

[18]. By using (15) and (16) ,we get

$$
\begin{aligned}
\sum_{k=0}^{\infty} \sum_{n=0}^{\infty} \mathcal{B}_{n}^{[-k, 1]}(x+y) \frac{t^{n}}{n!} \frac{u^{k}}{k!} & =\frac{e^{(x+y) t} e^{u}}{1-\left(e^{t}-1\right)\left(e^{u}-1\right)} \\
& =\sum_{j=0}^{\infty} e^{(x+y) t}\left(e^{t}-1\right)^{j} e^{u}\left(e^{u}-1\right)^{j} \\
& =\sum_{j=0}^{\infty}\left[j!\frac{e^{(x+y) t}\left(e^{t}-1\right)^{j}}{j!}\right]\left[\frac{j!e^{u}\left(e^{u}-1\right)^{j}}{j!}\right] \\
& =\sum_{j=0}^{\infty} j!\sum_{n=0}^{\infty} S_{2}(n, j, x+y) \frac{t^{n}}{n!} \cdot j!\sum_{k=0}^{\infty} S_{2}(k, j, 1) \frac{u^{k}}{k!}
\end{aligned}
$$

By using Cauchy product and comparing the coefficients of both sides, we have (14).

## References

[1] Al-Salam., W. A., $q$-Bernoulli numbers and polynomials, Math. Nachr. 17 (1959), 239-260.
[2] Al-Salam., W. A., q-Appell polynomials, Ann. Math. Pura Appl. (4)77. (1967) 91-45.
[3] Bayad A., Hamahata Y., Polylogarithms and poly-Bernoulli polynomials: Kyushu J.Math. 65. (2011) 15-34.
[4] Cakic N. P., Milovanovic.G.V., On generalized Stirling Numbers and polynomials, Math. Balk. 18 (2004) 241-248.
[5] Carlitz L., $q$-Bernoulli numbers and polynomials, Duke Math. J. 15(1948) 987-1000.
[6] Carlitz L.,Weighted Stirling numbers of the first and second kind-II. Fibonacci Quart 18(1980) 147-162.
[7] Hamahata Y., Poly-Euler polynomials and Arakawa-Kaneko type zeta Functions: Functione et. App. Commentarii Mathematica. 51(1), (2014) 7-27.
[8] Kac V., Cheung P., Quantum Calculus Springer.Verlag 2003.
[9] Kaneko M., Poly-Bernoulli Numbers, J. Theor. Nombres Bordeaux 9(1). 221-228.
[10] Kim D., Kurt B., Kurt V., Some identities on the generalized $q$-Bernoulli, $q$-Euler and $q$-Genocchi polynomials, Abstract and Appl.Analy., Vol2013 Article ID:293532.
[11] Kim D., Kim T., A note on poly-Bernoulli and higher order poly-Bernoulli polynomials, Russian J. of Math. Physics, 22(1) (2015) 26-33.
[12] Kurt V., New identities and relation derived from the generalized Bernoulli polynomials. Euler and Genocchi polynomials, Advanced in Diff. Equa. 2014. 2014.5.
[13] Lewin L., Structural Properties of polylogarithms, Math. Survey and Monograph, Amer. Math. Soc. vol 371991.
[14] Luo Q. M., Some results for the q-Bernoulli and $q$ - Euler polynomials, Journal.of Math. Analysis and Applications, 363(1), 7-18.
[15] Mahmudov N. I., $q$-Analogues of the Bernoulli and Genocchi polynomials and thde Srivastava-Pinter addition theorem Discrete Dyn. in Nature and Society. 2012 Article ID. 169343.
[16] Mahmudov N. I., On a class of $q$-Bernoulli and $q$-euler polynomials, Advances in Diff. Equa 2013. 2013. 108.
[17] Sadjang P. N., $q$-addition theorems for the q-Appell polynomials and the associated class of $q$-polynomial expansions, J. Korean Math. Soc. 55 (2018) no5. 1179-1192.
[18] Simsek Y., Generating Functions for Generalized Stirling Type numbers, Array Type polynomials, Eulerian type polynomials and Their Applications, Fixed Point Theory and Applications vol.2013, no.87, 2013.
[19] Srivastava H. M., Pinter A., Remark on some relationships between the Bernoulli and Euler polynomials App. Math. Lett. 17 (2004) 375-380.
[20] Srivastava H. M., Some generalization and basic (orq-) extension of Bernoulli, Euler and Genocchi polynomial, App. Math. Infor. Sci, 5 (2011) 390-444.
[21] Srivastava H. M., Choi J., Series associated with the zeta and related functions, Kluwer Academic. Pub. Dordrecht, Boston and London (2011).


[^0]:    2010 Mathematics Subject Classification. 11B68; 11B73, 11S80.
    Keywords. Bernoulli numbers and polynomials; Euler numbers and polynomials; $q$-Bernoulli polinomials; $q$-Euler polynomials;
    Polylogarithm function; Stirling numbers of the second kind; poly-Bernoulli polynomials; poly-Genocchi polynomials.
    Received: 17 January 2019; Revised: 02 May 2019; Revised: 09 July 2019; Accepted: 30 July 2019
    Communicated by Yilmaz Simsek
    This article is dedicated to Professor Gradimir V. Milovanovic on the Occasion of his 70th anniversary.
    Email addresses: secilbilgic@aydin.edu.tr (Secil Bilgic), vkurt@akdeniz.edu.tr (Veli Kurt)

