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Abstract Motivated by the latest discovery of doubly charmed tetraquark T +
cc by LHCb collaboration, we have studied the magnetic

moments of the possible doubly heavy pentaquark states with quantum numbers J P � 1/2− and J P � 3/2− within the light-cone
sum rules method. In the analysis, these possible pentaquark states are considered in diquark–diquark–antiquark structure. The
magnetic moments of hadrons encode helpful details about the distributions of the charge and magnetization inside the hadrons,
which help us to figure out their geometric configurations. As a by-product, the electric quadrupole and magnetic octupole moments
of the spin − 3/2 doubly heavy pentaquark states are also extracted. These values show a non-spherical charge distribution. It will be
interesting and useful to examine the magnetic moments of these possible doubly heavy pentaquark states with different theoretical
approaches.

1 Introduction

The first experimental discovery came in 2003 with the discovery of the X(3872) state [1], although they were theoretically predicted
long ago that states other than conventional hadrons could exist. Since then, scientist have paid more and more attention to the study of
exotic states that are very different from conventional hadrons. The investigation of exotic states and how the quarks are got together
inside plays a important role for comprehension the low energy QCD, and it is very crucial to search for them in experiments. To
date, many of multiquark states have been observed by different experimental facilities. Recent progress regarding these multiquark
states can be seen in Refs. [2–16].

In 2015, the LHCb collaboration explored the �0
b → J/ψ K− p process and announced the observation of the two candidates

for pentaquark states, Pc(4380) and Pc(4450), in the J/ψ p invariant mass distribution [17]. In 2019, three new pentaquark states,
Pc(4312), Pc(4440) and Pc(4457), were reported in the updated analyses of the LHCb collaboration [18]. These pentaquark states
were discovered in the J/ψ p invariant mass spectrum, indicating that all the states include a combination of the uudcc̄ quark
flavors. In 2020, the LHCb Collaboration announced a pentaquark state, Pcs(4459), in the invariant mass spectrum of J/ψ� in the
�0

b → J/ψ � K− decay [19]. Since this pentaquark state is observed in the invariant mass distribution J/ψ�, the quark content is
considered to be udscc̄. It should be noted here that most of the heavy multiquark states discovered in the experiment so far have a
hidden-charm/bottom quark structure. Recently, the first two charm quark-containing exotic state, T +

cc, was observed by the LHCb
collaboration in the D0D0π+ mass spectrum [20, 21]. Its mass, with respect to the D0D∗+ threshold, and width have been measured
to be δm � mT +

cc
− (mD0 + mD∗+ ) � −273 ± 61 ± 5+11−14 KeV, � � 410 ± 165 ± 43+18−38 KeV. The spin parity of T +

cc tetraquark
state was estimated by the experiment as J P � 1+. Clearly, the discovery of T +

cc tetraquark state will open a new window to search
for the new states beyond the standard hadrons, both experimentally and theoretically. If the T +

cc is the doubly charmed tetraquark
state exist, there may also exist the doubly charmed pentaquarks state. This argument is very similar to the underlying reasoning
of predicting the hidden-charm pentaquarks from the existence of the hidden-charm tetraquark states. The only difference is that
now we have two charm quarks instead of a c̄c pair. If these doubly charmed pentaquark states do not exist, it also is important,
in our opinion, to explore the reasons why they are not. Inspired by this, it is well motivated and very interesting to search for the
possible doubly charmed pentaquark states. We would also like to point out that in Refs. [22–24], mass and possible decay channels
of possible doubly charmed pentaquark states have been investigated within molecular pictures. In these studies, it has been shown
that these possible pentaquark states are below the threshold of the possible meson–baryon state. In the study conducted in Ref. [25],
possible pentaquark states are considered as compact pentaquarks and the results obtained seem to be consistent with the results
obtained with the molecular pictures. Based on results of these studies, it can be seen that these possible pentaquark states might be
below threshold and hence stable.

Compared to the doubly heavy baryons, the doubly heavy pentaquark states should be expected to be heavier. But, the sophisticated
interactions within multiquark states may lower the mass, which likely makes it hard to separate experimentally a traditional baryon
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from a pentaquark state just from the mass consideration. Examining other properties of these states along with mass, such as
electromagnetic properties, can help shed light on the inner nature of these states. The magnetic dipole and higher moments of
hadrons can help us to obtain helpful details on the charge and magnetization distributions as well as their geometric shape. In this
work, we study the magnetic moments of spin − 1/2 and spin − 3/2 doubly heavy pentaquark (For short P1/2

QQ and P3/2
QQ , respectively)

states using the light-cone sum rule formalism [26–28] in the compact pentaquark picture. The attractive interaction induced by
one-gluon exchange supports formation of the diquarks in color antitriplet and the supported configurations are the scalar and
axialvector diquark states from the QCD sum rules [29–32]. In case of the heavy diquark systems, only the tensor and axialvector
diquarks remain because of the Fermi–Dirac statistics, the axialvector diquarks are more stable than the tensor diquarks. Therefore,
in this study, we choose the axialvector type heavy diquark interpolating currents. There are some theoretical estimations on the
internal structure of P1/2

QQ and P3/2
QQ states, their masses, production mechanisms and decay channels using different configurations

and models [22–25, 33–37]. It should be noted here that magnetic moments of hidden-charm pentaquark states have been obtained
via different models and substructures [38–45]. Though the short lifetimes of the pentaquark states make the magnetic moment
difficult to be measured at present, more data accumulation in different experiments in the future may make this possible. The
�+(1232) baryon has also a very short lifetime; however, its magnetic moment have been obtained by means of γ N → � → �γ

→ πNγ process [46–48]. The electromagnetic properties of baryons containing two charm quarks have been calculated in the
framework of the lattice QCD method [49, 50], and it may be possible to generalize these analyzes to exotic states in the near future.

This work has the following structure. In Sect. 2, we briefly discuss the formalism and calculate the light-cone sum rule for the
magnetic moments under investigation. In Sect. 3, the numerical analysis and discussions for the magnetic moments are presented.
A brief summary of the article is presented in Sect. 4. The explicit expressions of the photon distribution amplitudes and magnetic
moments for spin − 1/2 doubly heavy pentaquark states are given in Appendixes 1 and 2.

2 Formalism

For magnetic moment analysis, calculations are started by writing the appropriate correlation function in the light-cone sum rules.
This correlation function allows us to calculate the physical quantity to be calculated, in our case, the magnetic moment, in terms of
both QCD and hadron parameters. Then, the correlation function calculated in two different ways is equalized to each other using
the quark–hadron duality. As a final step, Borel transform and continuum subtraction are performed to reduce continuum and higher
states effects.

2.1 Formalism of the P1/2
QQ states

The correlation function required for the computations magnetic moment has the following form:


(p, q) �i
∫

d4xeip·x 〈0|T
{
J P1/2

QQ (x) J̄ P1/2
QQ (0)

}
|0〉γ , (1)

where γ is the external electromagnetic field and the J(x) stands for interpolating currents of the considered spin − 1/2 doubly
heavy pentaquark states. We would like to point out that many possible interpolating currents can be written for exotic states, but
the number of possible interpolating currents that can be written can be slightly reduced when the QCD sum rules and the states
to be examined are taken into account. As we mentioned in the introduction of the text, only axialvector or tensor structures make
significant contributions in case of heavy–heavy diquark configurations. Among these two structures, axialvector structures were
preferred because they are more stable (Considering the heavy quark limit, it can be seen that the tensor structure is proportional
to zero). Apart from the heavy–heavy diquark case, heavy–light diquarks may also be in question. However, due to the lack of
spectroscopic parameters in the QCD sum rules, they are excluded from this work for now, considering that they can be examined
in future studies. Therefore, in this work, we choose the axialvector type heavy–heavy diquark interpolating current and its given as
follows [25]:

J P1/2
QQ (x) � εabcεadeεb f g

[
QT

d (x)CγμQe(x)
][
uTf (x)Cγ5dg(x)

]
γ5γ

μCq̄Tc (x) , (2)

where Q is c or b-quark and q is u or d-quark.
In order to get the hadronic degrees of freedom of the correlation function, we insert a complete set of intermediate P1/2

QQ states
with the same quantum numbers as the interpolating currents into the correlation function. As a result, we get


Had (p, q) � 〈0 | J (x) | P1/2
QQ(p, s)〉

[p2 − m2
P1/2
QQ

]
〈P1/2

QQ(p, s) | P1/2
QQ(p + q, s)〉γ

〈P1/2
QQ(p + q, s) | J̄ (0) | 0〉
[(p + q)2 − m2

P1/2
QQ

]
+ · · · (3)

123
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The matrix element 〈P1/2
QQ(p, s) | P1/2

QQ(p + q, s)〉γ inserting Eq. (3) can be described in connection with form factors as follows:

〈
P1/2
QQ(p, s) | P1/2

QQ(p + q, s)
〉
γ

� εμ ū(p, s)

⎡
⎣[

F1(q2) + F2(q2)
]
γμ + F2(q2)

(2p + q)μ
2m

P1/2
QQ

⎤
⎦ u(p + q, s). (4)

We insert Eq. (4) in Eq. (3). Then, after some calculations are made, we get the result for the hadronic side as follows:


Had (p, q) �λ2
P1/2
QQ

γ5

(
p/ + m

P1/2
QQ

)
[
p2 − m2

P1/2
QQ

]εμ

[[
F1(q2) + F2(q2)

]
γμ + F2(q2)

(2p + q)μ
2m

P1/2
QQ

]
γ5

(
p/ + q/ + m

P1/2
QQ

)
[

(p + q)2 − m2
P1/2
QQ

] . (5)

The value of form factors F1(q2) and F2(q2) give us the magnetic form factor FM (q2) at different q2 :

FM (q2) � F1(q2) + F2(q2). (6)

At static limit, i.e., q2 � 0, magnetic form factor FM (q2 � 0) is proportional to the magnetic moment μPQQ for real photon :

μPQQ � e

2mPQQ

FM (q2 � 0). (7)

The next step is to obtain the correlation function in terms of QCD degrees of freedom. When calculating the correlation function in
terms of QCD degrees of freedom, the explicit forms of the interpolating currents are substituted into the correlation function. Then,
the relevant light and heavy quark fields are contracted via the Wick’s theorem, and the desired results are obtained. Consequently,
we get


QCD(p, q) � − i εabcεadeεb f gεa′d ′e′εa′b′c′εb′ f ′g′
∫

d4x eip·x 〈0 | γ5γ
μ S̃c

′c
q (−x)γ νγ5

{
Tr

[
γμS

ee′
Q (x)γν S̃

dd ′
Q (x)

]
Tr

[
γ5S

gg′
d (x)γ5 S̃

f f ′
u (x)

]

− Tr
[
γμS

ed ′
Q (x)γν S̃

de′
Q (x)

]
Tr

[
γ5S

gg′
d (x)γ5 S̃

f f ′
u (x)

]}
| 0〉γ , (8)

where S̃i jQ(q)(x) � CSi jTQ(q)(x)C and Sq (x) and SQ(x) are the light and heavy quark propagators, respectively. Their explicit expressions
in the x-space are presented as

Sq (x) � i
� x

2π2x4 − 〈q̄q〉
12

(
1 − i

mq � x
4

)
− 〈q̄q〉

192
m2

0x
2
(

1 − i
mq � x

6

)
− igs

32π2x2 Gμν(x)
[
� xσμν + σμν � x

]
, (9)

SQ(x) �m2
Q

4π2

[
K1(mQ

√−x2)√−x2
+ i

� x K2(mQ
√−x2)

(
√−x2)2

]

− gsmQ

16π2

∫ 1

0
dvGμν(vx)[(σμν � x + � xσμν) × K1(mQ

√−x2)√−x2
+ 2σμνK0(mQ

√
−x2)], (10)

where 〈q̄q〉 is quark condensate, m0 is characterized via the quark-gluon mixed condensate 〈0 | q̄ gs σμν Gμν q | 0〉 � m2
0 〈q̄q〉,

K0, K1 and K2 are modified the second kind Bessel functions, v is line variable and Gμν is the gluon field strength tensor. The first
term of the light and massive quark propagators corresponds to the free or perturbative part, and the remaining part is related to the
interacting parts.

The correlation function in Eq. (8) includes different types of contributions: The photon can be emitted both perturbatively and
non-perturbatively. In the first case, one of the free light or massive quark propagators in Eq. (8) is replaced by

Sfree →
∫

d4y Sfree(x − y) /A(y) Sfree(y) , (11)

and the remaining four propagators are replaced with the full quark propagators. The light-cone sum rule calculations are most
conveniently done in the fixed-point gauge. For electromagnetic field, it is defined by xμAμ � 0. In this gauge, the electromagnetic
potential is given by

Aα � −1

2
Fαβ y

β � −1

2
(εαqβ − εβqα) yβ . (12)

Equation (12) is plugged into Eq. (11), as a result of which we obtain

Sfree → −1

2
(εαqβ − εβqα)

∫
d4y yβ Sfree(x − y) γα Sfree(y) . (13)

123
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After some calculations for Sfree
q and Sfree

Q , we get

Sfree
q � eq

32π2x2

(
εαqβ − εβqα

)(
� xσαβ + σαβ � x

)
,

Sfree
Q � −i

eQmQ

32π2

(
εαqβ − εβqα

)[
2σαβK0

(
mQ

√
−x2

)
+
K1

(
mQ

√−x2
)

√−x2

(
� xσαβ + σαβ � x

)]
. (14)

In the second case, one of the light quark propagators in Eq. (8) is replaced by

Sabαβ → −1

4
(q̄a�i q

b)(�i )αβ, (15)

and the remaining propagators are full quark propagators including the perturbative as well as the non-perturbative contributions.
Here as an example, we give a short detail of the calculations of the QCD representations. In the second case for simplicity, we only
consider the first trace in Eq. (8),


QCD(p, q) � −i εabcεadeεb f gεa′d ′e′εa′b′c′εb′ f ′g′
∫

d4x eip·x 〈0 | γ5γ
μ S̃c

′c
q (−x)γ νγ5

{
Tr

[
γμS

ee′
Q (x)γν S̃

dd ′
Q (x)

]
Tr

[
γ5S

gg′
d (x)γ5 S̃

f f ′
u (x)

]}
| 0〉γ + ... (16)

By replacing one of the light propagators with the expressions in Eq. (9) and making use of

q̄a(x)�i q
a′

(0) → 1

3
δaa

′
q̄(x)�i q(0), (17)

Eq. (16) takes the form


QCD(p, q) � i εabcεadeεb f gεa′d ′e′εa′b′c′εb′ f ′g′
∫

d4x eip·x

{
γ5γ

μ�iγ
νγ5 Tr

[
γμS

ee′
Q (x)γν S̃

dd ′
Q (x)

]
Tr

[
γ5S

gg′
d (x)γ5 S̃

f f ′
u (x)

]
δc

′c

+ γ5γ
μ S̃c

′c
q (−x)γ νγ5 Tr

[
γμS

ee′
Q (x)γν S̃

dd ′
Q (x)

]
Tr

[
γ5�iγ5 S̃

f f ′
u (x)

]
δgg

′

+ γ5γ
μ S̃c

′c
q (−x)γ νγ5 Tr

[
γμS

ee′
Q (x)γν S̃

dd ′
Q (x)

]
Tr

[
γ5S

gg′
d (x)γ5�i

]
δ f f ′

}
1

12
〈γ (q)|q̄(x)�i q(0)|0〉 + ..., (18)

where �i � I, γ5, γμ, iγ5γμ, σμν/2. Similarly, when a light propagator interacts with the photon, a gluon may be released from one
of the remaining four propagators. The expression obtained in this case is as follows:


QCD
μν (p, q) � i εabcεadeεb f gεa′d ′e′εa′b′c′εb′ f ′g′

∫
d4x eip·x

{
γ5γ

μ�iγ
νγ5 Tr

[
γμS

ee′
Q (x)γν S̃

dd ′
Q (x)

]
Tr

[
γ5S

gg′
d (x)γ5 S̃

f f ′
u (x)

][(
δceδc

′e′ − 1

3
δcc

′
δee

′)

+
(
δcdδc

′d ′ − 1

3
δcc

′
δdd

′)
+
(
δcgδc

′g′ − 1

3
δcc

′
δgg

′)
+
(
δc f δc

′ f ′ − 1

3
δcc

′
δ f f ′)]

+ γ5γ
μ S̃c

′c
q (−x)γ νγ5 Tr

[
γμS

ee′
Q (x)γν S̃

dd ′
Q (x)

]
Tr

[
γ5�iγ5 S̃

f f ′
u (x)

][(
δgcδg

′c′ − 1

3
δgg

′
δcc

′)

+
(
δgeδg

′e′ − 1

3
δee

′
δgg

′)
+
(
δgdδg

′d ′ − 1

3
δgg

′
δdd

′)
+
(
δg f δg

′ f ′ − 1

3
δgg

′
δ f f ′)]

+ γ5γ
μ S̃c

′c
q (−x)γ νγ5 Tr

[
γμS

ee′
Q (x)γν S̃

dd ′
Q (x)

]
Tr

[
γ5S

gg′
d (x)γ5�i

][(
δ f cδ f ′c′ − 1

3
δ f f ′

δcc
′)

+
(
δ f eδ f ′e′ − 1

3
δ f f ′

δee
′)

+
(
δ f dδ f ′d ′ − 1

3
δ f f ′

δdd
′)

+
(
δ f gδ f ′g′ − 1

3
δ f f ′

δgg
′)]}

× 1

32
〈γ (q)|q̄(x)�i Gμν(vx)q(0)|0〉 + ..., (19)

where we inserted

q̄a(x)�i G
bb′
μν (vx)qa

′
(0) → 1

8

(
δabδa

′b′ − 1

3
δaa

′
δbb

′)
q̄(x)�i Gμν(vx)q(0). (20)

As is seen, there appear matrix elements such as 〈γ (q)|q̄(x)�i q(0)|0〉 and 〈γ (q)
∣∣q̄(x)�i Gμν(vx)q(0)

∣∣0〉, representing the non-
perturbative contributions. These matrix elements can be expressed in terms of photon distribution amplitudes (DAs) and wave

123
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functions with definite twists, whose expressions are given in Appendix 1. Besides these matrix elements, non-local operators such
as two gluons (q̄GGq) and four quarks (q̄qq̄q) are expected to seem. However, it is known that the effects of such operators are
small, which is justified by the conformal spin expansion [51, 52], and thus, we shall ignore them. The QCD representation of the
correlation function is obtained by using Eqs. (8–20). Then, the Fourier transformation is applied to transfer expressions in x-space
to the momentum space.

To find the desired sum rules, we obtain the invariant amplitude 
QCD(p, q) corresponding to the structure ε/q/ and match it
to 
Had(p, q). We perform the double Borel transformation to both representations of the acquired equality, which is needed to
suppress contributions of the higher resonances and continuum states. The last operation to be applied is continuum subtraction,
which is obtained by invoking assumption on quark–hadron duality. After these steps, we acquire the required sum rules for the
magnetic moments:

μ
P1/2
QQ

λ2
P1/2
QQ

m
P1/2
QQ

� e

m2

P
1/2
QQ

M2 �QCD. (21)

Explicit forms of the analytical expressions obtained for the �QCD function are given in Appendix 2.

2.2 Formalism of the P3/2
QQ states

In the present subsection, we derive the light-cone sum rule for the magnetic moments of the P3/2
QQ pentaquark states. To do this, we

begin with subsequent correlation function,


μν(p, q) � i
∫

d4xeip·x
〈
0|T {J P3/2

QQ
μ (x) J̄

P3/2
QQ

ν (0)}|0
〉
γ

, (22)

where the interpolating current of doubly heavy pentaquark states with J P � 3
2

−
is denoted J

P3/2
QQ

μ(ν) . In the compact pentaquark
picture, it is given as [25]

J
P3/2
QQ

μ (x) � εabcεadeεb f g
[
QT

d (x)CγμQe(x)
][
uTf (x)Cγ5dg(x)

]
Cq̄Tc (x) . (23)

The correlation function obtained depending on the hadron parameters is written as,


Had
μν (p, q) � 〈0 | J P3/2

QQ
μ (x) | P3/2

QQ(p, s)〉[
p2 − m2

P3/2
QQ

] 〈P3/2
QQ(p, s) | P3/2

QQ(p + q, s)〉γ
〈P3/2

QQ(p + q, s) | J̄ P3/2
QQ

ν (0) | 0〉[
(p + q)2 − m2

P3/2
QQ

] + ... (24)

The matrix element of the interpolating current between the vacuum and the P3/2
QQ pentaquark is defined as

〈0 | J P3/2
QQ

μ (x) | P3/2
QQ(p, s)〉 � λ

P3/2
QQ

uμ(p, s),

〈P3/2
QQ(p + q, s) | J̄ P3/2

QQ
ν (0) | 0〉 � λ

P3/2
QQ

ūν(p + q, s), (25)

where the uμ(p, s), uν(p + q, s) and λ
P3/2
QQ

are the spinors and residue doubly heavy P3/2
QQ pentaquark states, respectively.

The transition matrix element 〈P3/2
QQ(p) | P3/2

QQ(p + q)〉γ entering Eq. (24) can be written as follows [53–56]:

〈
P3/2
QQ(p, s) | P3/2

QQ(p + q, s)
〉
γ

� −eūμ(p, s)

[
F1(q2)gμν � ε − 1

2m
P3/2
QQ

[
F2(q2)gμν + F4(q2)

qμqν

(2m
P3/2
QQ

)2

]
� ε �q

+ F3(q2)
1

(2m
P3/2
QQ

)2 qμqν � ε
]
uν(p + q, s), (26)

where Fi ’s are the Lorentz invariant form factors.
In principle, we can derive the hadronic representation of the correlation function employing Eqs. (22)-(26), but in this case

we run into two undesirable problems. The first of these problems is that the Lorentz structures in the correlation function are not
independent, and the second is that the correlation function also contains spin-1/2 contributions. Indeed, the matrix element of the
current Jμ between vacuum and spin − 1/2 doubly heavy pentaquarks is nonzero and is determined as

〈0 | Jμ(0) | B(p, s � 1/2)〉 � (Apμ + Bγμ)u(p, s � 1/2). (27)

123
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As is seen, the undesired spin − 1/2 effects are proportional to γμ and pμ. By multiplying both sides with γ μ and using the condition
γ μ Jμ � 0, one can specify the constant A in terms of B. To eliminate unwanted effects of the spin − 1/2 states and acquire only
independent Lorentz structures in the correlation function, we carry out the ordering for Dirac matrices as γμ p/ε/q/γν and eliminate
expressions with γμ at the beginning, γν at the end and those proportional to pμ and pν [57]. Consequently, employing Eqs. (22–26)
the hadronic side takes the form,


Had
μν (p, q) �

λ2

P
3/2
QQ[

(p + q)2 − m2
P

3/2
QQ

][
p2 − m2

P
3/2
QQ

]
[
gμν � p � ε �q F1(q2) − m

P3/2
QQ

gμν � ε �q F2(q2) − F3(q2)

4m
P3/2
QQ

qμqν � ε �q

− F4(q2)

4m3
P3/2
QQ

(ε.p)qμqν � p �q/ + ...

]
. (28)

The final form of the hadronic description is associated with the chosen structures as follows:


Had
μν (p, q) � 
Had

1 gμν � p � ε �q + 
Had
2 gμν � ε �q + ..., (29)

where 
Had
1 and 
Had

2 are functions of the form factors F1(q2) and F2(q2), respectively; and other independent structures and form
factors are denoted by dots.

The magnetic form factor, GM (q2), is characterized with respect to the form factors Fi (q2) as follows [53–56]:

GM (q2) � [F1(q2) + F2(q2)]

(
1 +

4

5
τ

)
− 2

5
[F3(q2) + F4(q2)]τ (1 + τ ), (30)

where τ � − q2

4m2

P
3/2
QQ

. At q2 � 0, the magnetic moment is obtained with respect to the functions F1(0) and F2(0) form factors as:

GM (0) �F1(0) + F2(0). (31)

The magnetic moment (μ
P3/2
QQ

) is described as follows,

μ
P3/2
QQ

� e

2m
P3/2
QQ

GM (0). (32)

When we perform the above processes, the calculations in terms of hadronic parameters, which are the first step of light-cone sum
rule calculations, are completed.

The second step in light-cone sum rule calculations is to evaluate the correlation function in Eq. (22) in connection with quark-
gluon parameters as well as photon DAs. Repeating the processes in the previous subsection gives the subsequent result:


QCD(p, q) � i εabcεadeεb f gεa′d ′e′εa′b′c′εb′ f ′g′
∫

d4x eip·x 〈0 | S̃c′c
q (−x)

{
Tr

[
γμS

ee′
Q (x)γν S̃

dd ′
Q (x)

]
Tr

[
γ5S

gg′
d (x)γ5 S̃

f f ′
u (x)

]

− Tr
[
γμS

ed ′
Q (x)γν S̃

de′
Q (x)

]
Tr

[
γ5S

gg′
d (x)γ5 S̃

f f ′
u (x)

]}
| 0〉γ . (33)

Consequently, the QCD representation of the correlation function in connection with the chosen structures is computed as


QCD
μν (p, q) �


QCD
1 gμν � p � ε �q + 


QCD
2 gμν � ε �q + .... (34)

Since the 

QCD
i functions are very lengthy, their explicit forms are not given here.

We have obtained the correlation function in terms of both QCD and hadronic parameters. For the magnetic moment calculations,
the QCD and hadronic descriptions of the correlation function are equalized using the quark–hadron duality ansatz. By matching
the coefficients of the structures gμν p/ε/q/ and gμνε/q/, respectively, for the F1 and F2, we get light-cone sum rules for these two
form factors. Consequently, we acquire,


Had
μν (p, q) � 
QCD

μν (p, q). (35)

Analytical expressions have also been obtained for the P3/2
QQ doubly heavy pentaquarks. The next step will be to perform numerical

calculations for both P1/2
QQ and P3/2

QQ doubly heavy pentaquarks.
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3 Numerical analysis

The light-cone sum rule for magnetic moments of the P1/2
QQ and P3/2

QQ states contains many input parameters that we need their

numerical values. We use mu � md � 0, mc � 1.275 ± 0.02 GeV , mb � 4.18+0.03−0.02 GeV [58], f3γ � −0.0039 GeV2 [59],
〈ūu〉 � 〈d̄d〉 � (−0.24 ± 0.01)3 GeV3 [60], m2

0 � 0.8 ± 0.1 GeV2 [60] and 〈g2
s G

2〉 � 0.88 GeV4 [61]. To further the numerical
analysis, we also need the numerical values of the mass and residues of these states. In Ref. [25], these values were obtained
within the framework of the mass sum rules. The obtained results for masses and residues are given as m

P1/2
cc

� 4.21+0.10−0.11 GeV ,

m
P3/2
cc

� 4.27+0.11−0.10 GeV , m
P1/2
bb

� 10.75+0.12−0.12 GeV , m
P3/2
bb

� 10.76+0.11−0.13 GeV , λ
P1/2
cc

� (2.51+0.46−0.39) × 10−3 GeV6, λ
P3/2
cc

�
(1.65+0.30

−0.25) × 10−3 GeV6, λ
P1/2
bb

� (7.53+1.52−1.39) × 10−3 GeV6 and λ
P3/2
bb

� (4.27+0.85−0.78) × 10−3 GeV6. One of the fundamental

components of the light-cone sum rules for the magnetic moment is the photon DAs. The values of DAs are obtained in Ref. [59],
which we will employ in our numerical computations. The explicit expressions of the photon DAs are given in Appendix 1.

The light-cone sum rules calculation for magnetic moments of doubly heavy pentaquarks also contains two arbitrary parameters:
the Borel mass M2 and the continuum threshold s0. According to the philosophy of the method used, we should find the working
intervals in which the magnetic moments are practically insensitive to variations of these parameters. To do this, two constraints
are applied, such as pole contribution (PC) and convergence of operator product expansion (OPE). Our numerical analysis indicates
that the requirements of the method are fulfilled in the regions of arbitrary parameters presented as

23.0 GeV2 ≤ s0 ≤ 25.0 GeV2,

5.0 GeV2 ≤ M2 ≤ 7.0 GeV2, (36)

for doubly charmed pentaquark states and

121.0 GeV2 ≤ s0 ≤ 125.0 GeV2,

11.0 GeV2 ≤ M2 ≤ 15.0 GeV2, (37)

for doubly bottom pentaquark states. In our calculations, PC changes on average within limits 0.33 ≤ PC ≤ 0.58, which is acceptable
for multiquark states. When we examine the OPE convergence, we have obtained that the contribution of the higher-dimensional
term in OPE is less than ∼ 1%. As can be seen from these results, the chosen working regions for M2 and s0 meet the requirements
of the method.

In Fig. 1, as an example, we plot the dependencies of the magnetic moments of doubly charmed pentaquark states on M2 at
several fixed values of the s0. As can be seen from the figure, though being not completely insensitive, the magnetic moments show
reasonable dependency on the arbitrary parameters, s0 and M2 which is acceptable in the error limits of the light-cone sum rule
method.

We have determined all the parameters we need to complete the numerical analysis of magnetic moments. Using the values of
the parameters we determined, we give the numerical results we obtained for the magnetic moment as follows:

μPccudū � 1.08+0.38−0.34 μN , μPbbudū � −2.48+0.74−0.67 μN , (38)

μPccudd̄ � 0.93+0.32−0.29 μN , μPbbudd̄ � −3.09+0.93−0.84 μN , (39)

for spin − 1/2 doubly heavy pentaquark states,

μPccudū � 4.23+2.00
−1.58 μN , μPbbudū � 5.46+1.04−1.00 μN , (40)

μPccudd̄ � 2.01+0.86
−0.75 μN , μPbbudd̄ � 3.14+0.64−0.61 μN , (41)

for spin − 3/2 doubly heavy pentaquark states. The errors in the results given in Eqs. (38) and (41) are due to all input parameters,
extra parameters such as s0 and M2, as well as the parameters on which the wave functions used in the photon distribution amplitudes
depend. The magnetic moments of the doubly heavy pentaquark states have been extracted from the light-cone sum rules employing
for their physical representations a simple-pole approximation [see, Eqs. (3) and (24)]. In the case of the multiquark hadrons such
approximation should be verified by supplementary arguments, because a physical side of relevant sum rules receives contributions
from two-hadron reducible terms as well. This problem was first proposed during theoretical studies of the pentaquarks [62, 63].
Two-hadron contaminating terms have to be considered when extracting parameters of multiquark hadrons. In the case of the
multiquark hadrons, they lead to modification in the quark propagator

1

m2 − p2 → 1

m2 − p2 − i
√
p2�(p)

, (42)

where �(p) is the finite width of the multiquark hadrons generated by two-hadron scattering states. When these effects are properly
considered in the sum rules, they rescale the residue of the multiquark hadrons under investigations leaving its mass unchanged.
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(a) (b)

(c) (d)

Fig. 1 Dependencies of magnetic moments of P1/2
cc and P3/2

cc states on M2 at three different values of s0; a and b for P1/2
cc states; and c and d for P3/2

cc
states

Detailed investigations show that two-hadron scattering effects are small for multiquark hadrons (see Refs. [63–73]). Therefore, in
the present study the zero-width single-pole approximation has been used.

When the results in Eqs. (38–41) are examined, it can be seen that the results acquired for the magnetic moments are of measurable
size in the experiments. It is seen that the spin-1/2 doubly heavy pentaquarks results are close to each other, but the difference between
the results of the spin − 3/2 doubly heavy pentaquark states is on the order of two. To understand the reason for this difference, we
extracted the individual quark contributions to the magnetic moments. This can be done by dialing the corresponding charge factors
eq and eQ . In case of spin − 1/2 doubly heavy pentaquarks, we obtained that these magnetic moments are dominantly determined by
the heavy quarks. The situation is the opposite in the spin − 3/2 doubly heavy pentaquarks. In this case, the dominant contribution
comes from light quarks and the contribution of heavy quarks is negligible. A more detail investigation shows that the smallness of
the heavy quarks contributions is due to an almost exact cancelation of the expressions involving the heavy quarks, though these
expressions are not small themselves. It will be interesting and useful to examine the magnetic moments of these doubly heavy
pentaquark states with different theoretical approaches.

In Refs. [41, 42], the magnetic moments of the Pc(4312) and Pc(4380) hidden-charm pentaquark states have been acquired
within light-cone sum rules by assuming them as diquark–diquark–antiquark and molecular configurations. In these studies, the quark
content of both Pc(4312) and Pc(4380) hidden-charm pentaquark states are considered as cc̄udu, and the obtained magnetic moment
results for the diquark–diquark–antiquark picture have been given as μPc(4312) � 0.40 ± 0.15 μN and μPc(4380) � 1.30 ± 0.50 μN .
When the comparison is made for the states with the same quark content, it is seen that there is a significant difference between the
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magnetic moment results obtained for the hidden-charm and doubly charm pentaquarks. Whether the results obtained in this study
are consistent or not can be seen by examining the magnetic moments of these possible doubly heavy pentaquark states with other
theoretical models.

For completeness, we have also acquired higher multipole moments, electric quadrupole (Q) and magnetic octupole (O), of the
P3/2
QQ pentaquark states as

Pccudūstate : Q � −0.048+0.016−0.014 fm2, O � −0.022+0.008−0.006 fm3, (43)

Pbbudūstate : Q � −0.22+0.07−0.07 fm2, O � −0.10+0.04−0.03 fm3, (44)

Pccudd̄state : Q � 0.024+0.008−0.008 fm2, O � 0.011+0.005−0.004 fm3, (45)

Pbbudd̄state : Q � 0.11+0.04−0.03 fm2, O � 0.06+0.002−0.002 fm3. (46)

As can be seen from these results, the charge distribution of the P3/2
QQ pentaquark states is non-spherical. The sign of electric

quadrupole moment is positive for PQQudd̄ pentaquark states and negative for PQQudū pentaquark states, which correspond to the
prolate and oblate charge distributions, respectively.

4 Summary

Motivated by the latest discovery of doubly charmed tetraquark T +
cc by LHCb collaboration, we have studied the magnetic moments

of the possible doubly heavy pentaquark states with quantum numbers J P � 1/2− and J P � 3/2− in the framework of the light-
cone sum rules method. In the analysis, these possible pentaquark states are considered in diquark–diquark–antiquark structure. We
have also acquired nonvanishing values for the electric quadrupole and magnetic octupole moments of spin − 3/2 doubly heavy
pentaquark states which mean non-spherical charge distribution. The magnetic dipole and higher multipole moments of hadrons
encode helpful details about the distributions of the charge and magnetization inside the hadrons, which help us to figure out
their geometric configurations. The discovery of the first doubly charmed tetraquark state gave a new platform for hadron physics.
More theoretical and experimental attempts are required for to figure out its fundamental structure and non-perturbative nature of
QCD dynamics in this region. It would be exciting to predict future experimental attempts that will search possible doubly heavy
pentaquark states and test the obtainment from the present analysis.

Data Availability Statement This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical research
work, so no additional data are associated with this work.]

Appendix 1: Distribution amplitudes of the photon

In the present appendix, the matrix elements 〈γ (q)|q̄(x)�i q(0)|0〉 and 〈γ (q)
∣∣q̄(x)�i Gμνq(0)

∣∣0〉 associated with the photon DAs are
presented as follows [59],

〈γ (q)|q̄(x)γμq(0)|0〉 � eq f3γ

(
εμ − qμ

εx

qx

)∫ 1

0
dueiūqxψv(u)

〈γ (q)|q̄(x)γμγ5q(0)|0〉 � −1

4
eq f3γ εμναβενqαxβ

∫ 1

0
dueiūqxψa(u)

〈γ (q)|q̄(x)σμνq(0)|0〉 � −ieq〈q̄q〉(εμqν − ενqμ)
∫ 1

0
dueiūqx

(
χϕγ (u) +

x2

16
A(u)

)

− i

2(qx)
eq q̄q

[
xν

(
εμ − qμ

εx

qx

)
− xμ

(
εν − qν

εx

qx

)]∫ 1

0
dueiūqxhγ (u)

〈γ (q)|q̄(x)gsGμν(vx)q(0)|0〉 � −ieq〈q̄q〉(εμqν − ενqμ

) ∫
Dαi e

i(αq̄+vαg)qxS(αi )

〈γ (q)|q̄(x)gs G̃μν(vx)iγ5q(0)|0〉 � −ieq〈q̄q〉(εμqν − ενqμ

) ∫
Dαi e

i(αq̄+vαg)qx S̃(αi )

〈γ (q)|q̄(x)gs G̃μν(vx)γαγ5q(0)|0〉 � eq f3γ qα(εμqν − ενqμ)
∫

Dαi e
i(αq̄+vαg)qxA(αi )

〈γ (q)|q̄(x)gsGμν(vx)iγαq(0)|0〉 � eq f3γ qα(εμqν − ενqμ)
∫

Dαi e
i(αq̄+vαg)qxV(αi )
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〈γ (q)|q̄(x)σαβgsGμν(vx)q(0)|0〉 � eq〈q̄q〉
{[(

εμ − qμ

εx

qx

)(
gαν − 1

qx
(qαxν + qνxα)

)
qβ

−
(

εμ − qμ

εx

qx

)(
gβν − 1

qx
(qβxν + qνxβ )

)
qα −

(
εν − qν

εx

qx

)(
gαμ − 1

qx
(qαxμ + qμxα)

)
qβ

+

(
εν − qν

εx

q.x

)(
gβμ − 1

qx
(qβxμ + qμxβ )

)
qα

] ∫
Dαi e

i(αq̄+vαg)qxT1(αi )

+

[(
εα − qα

εx

qx

)(
gμβ − 1

qx
(qμxβ + qβxμ)

)
qν

−
(

εα − qα

εx

qx

)(
gνβ − 1

qx
(qνxβ + qβxν)

)
qμ

−
(

εβ − qβ

εx

qx

)(
gμα − 1

qx
(qμxα + qαxμ)

)
qν

+

(
εβ − qβ

εx

qx

)(
gνα − 1

qx
(qνxα + qαxν)

)
qμ

] ∫
Dαi e

i(αq̄+vαg)qxT2(αi )

+
1

qx
(qμxν − qνxμ)(εαqβ − εβqα)

∫
Dαi e

i(αq̄+vαg)qxT3(αi )

+
1

qx
(qαxβ − qβxα)(εμqν − ενqμ)

∫
Dαi e

i(αq̄+vαg)qxT4(αi )

}
,

where ϕγ (u) is the DA of leading twist-2, ψv(u), ψa(u), A(αi ) and V(αi ) are the twist-3 amplitudes, and hγ (u), A(u), S(αi ), S̃(αi ),
T1(αi ), T2(αi ), T3(αi ) and T4(αi ) are the twist-4 photon DAs. The measure Dαi is defined as

∫
Dαi �

∫ 1

0
dαq̄

∫ 1

0
dαq

∫ 1

0
dαgδ(1 − αq̄ − αq − αg) .

The expressions of the DAs that entering into the matrix elements above are described as follows:

ϕγ (u) � 6uū

(
1 + ϕ2(μ)C

3
2
2 (u − ū)

)
,

ψv(u) � 3
(
3(2u − 1)2 − 1

)
+

3

64

(
15wV

γ − 5wA
γ

)(
3 − 30(2u − 1)2 + 35(2u − 1)4),

ψa(u) � (
1 − (2u − 1)2)(5(2u − 1)2 − 1

)5

2

(
1 +

9

16
wV

γ − 3

16
wA

γ

)
,

hγ (u) � − 10
(
1 + 2κ+)C 1

2
2 (u − ū),

A(u) � 40u2ū2(3κ − κ+ + 1
)

+ 8(ζ +
2 − 3ζ2)[uū(2 + 13uū)

+ 2u3(10 − 15u + 6u2) ln(u) + 2ū3(10 − 15ū + 6ū2) ln(ū)
]
,

A(αi ) � 360αqαq̄α
2
g

(
1 + wA

γ

1

2
(7αg − 3)

)
,

V(αi ) � 540wV
γ (αq − αq̄ )αqαq̄α

2
g,

T1(αi ) � − 120(3ζ2 + ζ +
2 )(αq̄ − αq )αq̄αqαg,

T2(αi ) � 30α2
g(αq̄ − αq )

(
(κ − κ+) + (ζ1 − ζ +

1 )(1 − 2αg) + ζ2(3 − 4αg)
)
,

T3(αi ) � − 120(3ζ2 − ζ +
2 )(αq̄ − αq )αq̄αqαg,

T4(αi ) � 30α2
g(αq̄ − αq )

(
(κ + κ+) + (ζ1 + ζ +

1 )(1 − 2αg) + ζ2(3 − 4αg)
)
,

S(αi ) � 30α2
g{(κ + κ+)(1 − αg) + (ζ1 + ζ +

1 )(1 − αg)(1 − 2αg)

+ ζ2[3(αq̄ − αq )2 − αg(1 − αg)]},
S̃(αi ) � − 30α2

g{(κ − κ+)(1 − αg) + (ζ1 − ζ +
1 )(1 − αg)(1 − 2αg) + ζ2[3(αq̄ − αq )2 − αg(1 − αg)]}.

Numerical values of parameters used in DAs are: ϕ2(1 GeV ) � 0, wV
γ � 3.8 ± 1.8, wA

γ � −2.1 ± 1.0, κ � 0.2, κ+ � 0, ζ1 � 0.4
and ζ2 � 0.3.
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Appendix 2: The explicit expression of �QCD function

In here, we present the explicit expression for the function �QCD acquired from the light-cone sum rule in subsection 2.1. It is
acquired by selecting the � ε � p structure as follows:

�QCD � P2

849346560 π5

{
10P1(ed + eu)

[
4m2

Q

(
3m2

0

(
I [0, 2, 1, 0] − 2I [0, 2, 1, 1] + I [0, 2, 1, 2] − 2I [0, 2, 2, 0]

+ 2I [0, 2, 2, 1] + I [0, 2, 3, 0] − 2(I [1, 1, 1, 0] − 2I [1, 1, 1, 1] + I [1, 1, 1, 2] − 2I [1, 1, 2, 0] + 2I [1, 1, 2, 1]

+ I [1, 1, 3, 0])
)

+ 4
(
I [0, 3, 1, 0] − 3I [0, 3, 1, 1] + 3I [0, 3, 1, 2] − I [0, 3, 1, 3] − 2I [0, 3, 2, 0] + 4I [0, 3, 2, 1]

+ I [0, 3, 3, 0] − I [0, 3, 3, 1] + 3(I [1, 2, 1, 1] − 2I [1, 2, 1, 2] + I [1, 2, 1, 3] − 2I [1, 2, 2, 1] + 2I [1, 2, 2, 2]

− 2I [0, 3, 2, 2] + I [1, 2, 3, 1])
))

+ 3
(
I [0, 4, 2, 0] − 3I [0, 4, 2, 1] + 3I [0, 4, 2, 2] − I [0, 4, 2, 3] − 3I [0, 4, 3, 0]

+ 6I [0, 4, 3, 1] − 3I [0, 4, 3, 2] + 3I [0, 4, 4, 0] − 3I [0, 4, 4, 1] − I [0, 4, 5, 0] + 4(3I [1, 3, 2, 1] − 3I [1, 3, 2, 2]

+ I [1, 3, 2, 3] + 3( − 2I [1, 3, 3, 1] + I [1, 3, 3, 2] + I [1, 3, 4, 1]))
)]

+ 9eQ

[
16m2

Q

(
5P1

(
I [0, 3, 1, 0] − 2I [0, 3, 1, 1] + I [0, 3, 1, 2] − 2I [0, 3, 2, 0] + 2I [0, 3, 2, 1] + I [0, 3, 3, 0]

)

− 45m2
0

(
I [0, 4, 1, 1] − 2I [0, 4, 1, 2] + I [0, 4, 1, 3] − 2I [0, 4, 2, 1] + 2I [0, 4, 2, 2] + I [0, 4, 3, 1]

)
+ 18

(
I [0, 5, 1, 2]

− 2I [0, 5, 1, 3] + I [0, 5, 1, 4] − 2I [0, 5, 2, 2] + 2I [0, 5, 2, 3] + I [0, 5, 3, 2]
))

+ 3

(
5P1

(
I [0, 4, 2, 0] − 3I [0, 4, 2, 1]

+ 3I [0, 4, 2, 2] − I [0, 4, 2, 3] − 3I [0, 4, 3, 0] + 6I [0, 4, 3, 1] − 3I [0, 4, 3, 2] + 3I [0, 4, 4, 0] − 3I [0, 4, 4, 1] − I [0, 4, 5, 0]

+ 4(3I [1, 3, 2, 1] − 3I [1, 3, 2, 2] + I [1, 3, 2, 3] + 3( − 2I [1, 3, 3, 1] + I [1, 3, 3, 2] + I [1, 3, 4, 1]))
)

+ 36m2
0

(
I [0, 5, 2, 0] − 4I [0, 5, 2, 1] + 6I [0, 5, 2, 2] − 4I [0, 5, 2, 3] + I [0, 5, 2, 4] − 3I [0, 5, 3, 0] + 9I [0, 5, 3, 1]

− 9I [0, 5, 3, 2] + 3I [0, 5, 3, 3] + 3I [0, 5, 4, 0] − 6I [0, 5, 4, 1] + 3I [0, 5, 4, 2] − I [0, 5, 5, 0] + I [0, 5, 5, 1]

+ 5(I [1, 4, 2, 1] − 3I [1, 4, 2, 2] + 3I [1, 4, 2, 3] − I [1, 4, 2, 4] − 3(I [1, 4, 3, 1] − 2I [1, 4, 3, 2] + I [1, 4, 3, 3]

− I [1, 4, 4, 1] + I [1, 4, 4, 2]) − I [1, 4, 5, 1])
))

− 36

(
2I [0, 6, 2, 1] − 7I [0, 6, 2, 2] + 9I [0, 6, 2, 3] − 5I [0, 6, 2, 4]

+ I [0, 6, 2, 5] − 6I [0, 6, 3, 1] + 15I [0, 6, 3, 2] − 12I [0, 6, 3, 3] + 3I [0, 6, 3, 4] + 6I [0, 6, 4, 1] − 9I [0, 6, 4, 2]

+ 3I [0, 6, 4, 3] − 2I [0, 6, 5, 1] + I [0, 6, 5, 2] + 6
(
I [1, 5, 2, 2] − 3I [1, 5, 2, 3] + 3I [1, 5, 2, 4] − I [1, 5, 2, 5]

− 3(I [1, 5, 3, 2] − 2I [1, 5, 3, 3] + I [1, 5, 3, 4] − I [1, 5, 4, 2] + I [1, 5, 4, 3]) − I [1, 5, 5, 2]
))]}

+
P2

(13589544960 π5

{
2560(ed − eu) f3γm

2
Q P1π

2(2I2[A]I [0, 2, 2, 0] − I5[ψa]I [0, 2, 3, 0])

− 80m2
Q

(
144(2ed + eu) f3γm

2
0π

2 I2[V] + eq P1( − 44I1[S] − 33I1[T2] − 184I3[S] + 138I3[T1] + 193I3[T2]

+ 11I3[T4])
)
I [0, 3, 3, 0] − 345eq P1

(
4I1[S] − 3I1[T2] + 6I3[T2]

)
I [0, 4, 5, 0] + 360(2ed + eu) f3γ π2 I2[V]

×
(

32m2
Q I [0, 4, 3, 0] + 3m02 I [0, 4, 5, 0]

)
+ 864

(
8eqm

2
Q(4I3[S] − 3I3[T1] − 3I3[T2])I [0, 5, 3, 0]

+ (2ed + eu) f3γ π2 I2[V]I [0, 5, 5, 0]
)

− 432eq
(

4I1[S] − 3I1[T2] + 2(−8I3[S] + 6I3[T1] + 8I3[T2] + I3[T4])
)

× I [0, 6, 5, 0]

+ 2560(ed − eu) f3γm
2
Q P1π

2
(
I [0, 2, 1, 0] − 2I [0, 2, 1, 1] + I [0, 2, 1, 2] − 2I [0, 2, 2, 0] + 2I [0, 2, 2, 1] + I [0, 2, 3, 0]

)

× ψa[u0]

}
, (47)

where P1 � 〈g2
s G

2〉 is gluon condensate, P2 � 〈q̄q〉 stands for u/d-quark condensate. We should also remark that in Eq.(47);
for simplicity, we have only given the terms that give significant contributions to the numerical values of the magnetic moments
and neglected to give many higher-dimensional operators though they have been taken into account in the numerical analyses.
The I[n, m, l, k], I1[F], I2[F], I3[F], I4[F], I5[F] and I6[F] functions are defined as:

123



  936 Page 12 of 14 Eur. Phys. J. Plus         (2022) 137:936 

I [n,m, l, k] �
∫ s0

4m2
Q

ds
∫ 1

0
dt

∫ 1

0
dw e−s/M2

sn (s − 4m2
Q)m tl wk,

I1[F] �
∫

Dαi

∫ 1

0
dv A(αq̄ , αq , αg)δ′(αq + v̄αg − u0),

I2[F] �
∫

Dαi

∫ 1

0
dv A(αq̄ , αq , αg)δ′(αq̄ + vαg − u0),

I3[F] �
∫

Dαi

∫ 1

0
dv A(αq̄ , αq , αg)δ(αq + v̄αg − u0),

I4[F] �
∫

Dαi

∫ 1

0
dv A(αq̄ , αq , αg)δ(αq̄ + vαg − u0),

I5[F] �
∫ 1

0
du A(u)δ′(u − u0),

I6[F] �
∫ 1

0
du A(u),

where F denotes the corresponding photon DAs.
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