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Abstract

We study the existence and stability of periodic traveling-wave solutions for

the quadratic and cubic nonlinear Schrödinger equations in one space dimen-

sion.

1 Introduction

In this work we consider the nonlinear Schrödinger equation (NLS)

iut + uxx + |u|pu = 0. (1.1)

This equation appears in various problems, modeling many phenomena such as the
behavior of a non-ideal Bose gas with a weak particle interaction, the spreading of
the heat impulse in solids, the Langmuir waves in a plasma, etc. [17, 18].

Our principal aim is to study the the orbital stability of the family of periodic
traveling-wave solutions

u = ϕ(x, t) = ei(vx+(ω−v2)t)r(x− 2vt). (1.2)

where r(y) is a real-valued T -periodic function and v, ω ∈ R are parameters, for
quadratic (p=1) and cubic (p=2) nonlinear Schrödinger equation.The problem of
the stability of solitary waves for nonlinear dispersive equations goes back to the
works of Benjamin [4] and Bona [5] (see also [1, 15, 16]). A general approach for
investigating the stability of solitary waves for nonlinear equations having a group of
symmetries was proposed in [8]. The existence and stability of solitary wave solutions
for equation (1.1) has been studied in [19]. Recently in [3], the authors developed a
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complete theory on the stability of cnoidal waves for the KdV equation. Other new
explicit formulae for the periodic traveling waves based on the Jacobi elliptic func-
tions, together with their stability, have been obtained in [2, 9, 10] for the nonlinear
Schrödinger equation, modified KdV equation, complex modified KdV equation, and
generalized BBM equation. In [11], the stability of periodic traveling wave solutions
of BBM equation which wave profile stays close to the constant state u = (c − 1)1/p

is considered.
In this paper, we prove stability of the periodic traveling waves (1.2) not oscillating

around zero (r 6= 0) for the quadratic and the cubic NLS. Our main results are
formulated as Theorem 2.1 and Theorem 3.1 in Sections 2 and 3 below. We base our
analysis on some appropriate invariant laws. Our approach is to verify that ϕ is a
minimizer of a properly chosen functional M which is conservative with respect to
time over the solutions of (1.1). We consider the L2-space of T -periodic functions in
x ∈ R, with a norm ||.|| and a scalar product 〈., .〉. To establish that the orbit

O = {eiηϕ(· − ξ, t) : (ξ, η) ∈ [0, T ]× [0, 2π]}

is stable, we take

u(x, t) = eiηϕ(x− ξ, t) + h(x, t) = eiζ [r(x− ξ − 2vt) + h1 + ih2]

and express the leading term of M(u)−M(ϕ) as 〈L1h1, h1〉+ 〈L2h2, h2〉 where Li are
second-order selfadjoint differential operators in L2[0, T ] with potentials depending
on r and satisfying L1r

′ = L2r = 0. The proof of orbital stability requires that zero
is the second eigenvalue of L1 and the first one of L2.

Recall that the quadratic and cubic nonlinear Schrödinger equations are globally
well-posed in Hs(T), for s ≥ 0 [6].

The paper is organized as follows. We consider the quadratic and the cubic cases
in Sections 2 and 3 respectively. In Appendices 1 and 2, some facts from the theory of
complete Abelian integrals (e.g. Picard-Fuchs equations, polynomial moduli) are used
in order to derive several inequalities we needed during the proof our main results.

2 Existence and stability of periodic traveling waves

for the quadratic Schrödinger equation

Consider the equation
iut + uxx + |u|u = 0, (2.1)

where u is a complex-valued function.
We are looking for a solution of equation (2.1) in the form (1.2) where r is real-

valued. For r one obtains the equation

r′′ − ωr + r|r| = 0. (2.2)

Therefore,

r′2 − ωr2 +
2

3
r2|r| = c (2.3)
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and r is periodic provided that the level set H(x, y) = c of the Hamiltonian system
dH = 0, with

H(x, y) = y2 − ωx2 +
2

3
x2|x|,

contains a periodic trajectory (an oval). The level set H(x, y) = c contains two
periodic trajectories if ω > 0, c ∈ (−1

3
ω3, 0) and a unique periodic trajectory if

ω ∈ R, c > 0. Under these conditions, equation (2.3) becomes H(r, r′) = c and its
solution r is periodic of period T = T (ω, c).

Below, we consider the case c < 0. Then either r < 0 (the left case) or r > 0 (the
right case). To express r through elliptic functions, we denote by r0 > r1 > 0 the
positive solutions of 2

3
ρ3 − ωρ2 − c = 0. Then r1 ≤ |r| ≤ r0 and one can rewrite (2.3)

as
r′2 = 2

3
(|r| − r1)(r0 − |r|)(|r|+ r0 + r1 − 3

2
ω). (2.4)

Therefore 2r0 + r1 > r0 + 2r1 > 3
2
ω. Introducing a new variable s ∈ (0, 1) via

|r| = r1 + (r0 − r1)s
2, we transform (2.4) into

s′2 = α2(1− s2)(k′2 + k2s2)

where α, k, k′ are positive constants (k2 + k′2 = 1) given by

α2 =
4r0 + 2r1 − 3ω

12
, k2 =

2r0 − 2r1
4r0 + 2r1 − 3ω

, k′2 =
2r0 + 4r1 − 3ω

4r0 + 2r1 − 3ω
.

Therefore
|r(x)| = r1 + (r0 − r1)cn

2(αx; k). (2.5)

T =
2K(k)

α
=

4 4
√
1− k2 + k4K(k)√

ω
, k ∈ (0, 1), T ∈ I =

(
2π√
ω
,∞
)
. (2.6)

As usual, here and below, K(k) and E(k) denote the complete elliptic integrals of the
first and the second kind in a Legendre form. Let us recall for later use the system
they satisfy:

kK ′ =
E

1− k2
−K, kE ′ = E −K.

Lemma 2.1. For any ω > 0 and T ∈ I, there is a constant c = c(ω) such that the

periodic traveling-wave solution (2.5) determined by H(r, r′) = c(ω) has a period T .
The function c(ω) is differentiable.

Proof. The statement follows from the implicit function theorem. It is easily seen
that the period T is a strictly increasing function of k:

d
dk
( 4
√
1− k2 + k4K(k)) = k(2k2−1)K(k)+2(1−k2+k4)K ′(k)

2(1−k2+k4)3/4

= 2(1−k2+k4)E(k)+(1−k2)(k2−2)K(k)

2k(1−k2)(1−k2+k4)3/4 > 0.
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Given ω and c in their range, consider the functions r0(ω, c), r1(ω, c), k(ω, c) and
T (ω, c) given by the formulas we derived above. We obtain

∂T

∂c
=
dT

dk

dk

dc
=

1

2k

dT

dk

d(k2)

dc
.

Further, using that k2 = 3 2r0−ω
4r0+2r1−3ω

− 1 and 2
3
r30 − ωr20 =

2
3
r31 − ωr21, we have

d(k2)

dc
= 3

(4r1 − 2ω)∂r0
∂c

− (4r0 − 2ω)∂r1
∂c

(4r0 + 2r1 − 3ω)2

=
3ω2(r1 − r0)

4(r20 − ω2)(r21 − ω2)(4r0 + 2r1 − 3ω)2
.

We see that ∂T (ω, c)/∂c 6= 0, therefore the implicit function theorem yields the result.
✷

Equation (2.1) has the following conservation laws

Q(u) = i

∫ T

0

uxudx, P (u) =

∫ T

0

|u|2dx, E(u) =

∫ T

0

(|ux|2 −
2|u|3
3

)dx.

Let us consider the functional

M(u) = E(u) + (ω + v2)P (u)− 2vQ(u).

Next we introduce the pseudometric

d(u, ϕ) = inf
(η,ξ)∈[0,2π]×[0,T ]

||u(x, t)− eiηϕ(x− ξ, t)||1. (2.7)

For a fixed q > 0, we denote

d2q(u, ϕ) = inf
(η,ξ)∈[0,2π]×[0,T ]

(||ux(x, t)− eiηϕx(x− ξ, t)||2 + q||u(x, t)− eiηϕ(x− ξ, t)||2).
(2.8)

Clearly, the infimum in (2.8) is attained at some point (η, ξ) in the square [0, T ]×[0, T ].
Moreover, for q ∈ [q1, q2] ⊂ (0,∞), (2.8) is a pseudometric equivalent to (2.7).

Lemma 2.2. The metric dq(u, ϕ) is a continuous function of t ∈ [0,∞).

Proof. The proof of the lemma is similar to the proof of Lemmas 1, 2 in [5] ✷.
Now, we can formulate our main result in this section.

Theorem 2.1. Let ϕ be given by (1.2), with r 6= 0. For each ε > 0 there exists

δ > 0 such that if u(x, t) is a solution of (2.1) and d(u, ϕ)|t=0 < δ, then d(u, ϕ) < ε
∀t ∈ [0,∞).

The crucial step in the proof will be to verify the following statement.

Proposition 2.1. There exist positive constants m, q, δ0 such that if u is a periodic

solution of (2.1), u(x, t) = u(x+ T, t), P (u) = P (ϕ) and dq(u, ϕ) < δ0, then

M(u)−M(ϕ) ≥ md2q(u, ϕ). (2.9)
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Proof. In order to estimate ∆M =M(u)−M(ϕ), we set

u(x, t) = eiηϕ(x− ξ, t) + h(x, t),

ζ = v(x− ξ) + (ω − v2)t + η, F (s) = −2

3
|eiηϕ+ hs|3.

We have

2

3
(−|u|3 + |ϕ|3) = F (1)− F (0) = F ′(0) +

F ′′(0)

2
+
F ′′(s)− F ′′(0)

2

where

0 ≤ s ≤ 1, F ′(0) = −2|ϕ|Re(eiηϕh), F ′′(0) = −|ϕ|
[
Re(h2e−2iζ) + 3|h|2

]
.

Integrating by parts in the terms containing hx and hx, we obtain

∆M =M(u)−M(ϕ)

= 2Re
∫ T
0
eiη[−ϕxx + (ω + v2 − |ϕ|)ϕ+ 2ivϕx]hdx

+
∫ T
0
[|hx|2 + (ω + v2 − 3

2
|ϕ|)|h|2 − |ϕ|

2
Re(e−2iζh2)− 2ivhhx]dx

−
∫ T
0

F ′′(s)−F ′′(0)
2

dx

= I1 + I2 + I3.

Using that r(x) satisfies the equation (2.2) we obtain that I1 = 0.
Let h(x, t) = (h1+ ih2)e

iζ , where h1 and h2 are real periodic functions with period
T . Then we have

|h|2 = h21 + h22

|hx|2 = h21x + h22x + 2v(h1h2x − h1xh2) + v2(h21 + h22)

Re(e−2iζh2) = h21 − h22

∫ T
0
hhxdx = i

∫ T
0
(h1xh2 − h1h2x − vh21 − vh22)dx.

(2.10)

Finally, for I2 we obtain

I2 =

∫ T

0

[h21x + (ω − 2|r|)h21]dx+
∫ T

0

[h22x + (ω − |r|)h22]dx =M1 +M2
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Consider in [0, T ] = [0, 2K(k)/α] the formal differential operators

L1 = − d2

dx2
+ (ω − 2|r|), L2 = − d2

dx2
+ (ω − |r|),

supplied with periodic boundary conditions. By the above formulas, r0− r1 = 6α2k2,
2r0 − ω = 4α2(1 + k2). Taking y = αx as an independent variable in L1, one obtains
L1 = α2Λ1 with an operator Λ1 in [0, 2K(k)] given by

Λ1 = − d2

dy2
+ α−2[ω − 2(r1 + (r0 − r1)cn

2(y; k))]

= − d2

dy2
+
ω − 2r0
α2

+
2(r0 − r1)

α2
sn2(y; k)

= − d2

dy2
− 4(1 + k2) + 12k2sn2(y; k).

The spectral properties of the operator Λ1 in [0, 2K(k)] are well known. The first
three(simple) eigenvalues and corresponding eigenfunctions of Λ1 are

µ0 = k2 − 2− 2
√
1− k2 + 4k4 < 0,

ψ0(y) = dn(y; k)[1− (1 + 2k2 −
√
1− k2 + 4k4)sn2(y; k)] > 0

µ1 = 0

ψ1(y) = dn(y; k)sn(y; k)cn(y; k) = 1
2
d
dy
cn2(y; k)

µ2 = k2 − 2 + 2
√
1− k2 + 4k4 > 0

ψ2(y) = dn(y; k)[1− (1 + 2k2 +
√
1− k2 + 4k4)sn2(y; k)].

Since the eigenvalues of L1 and Λ1 are related by λn = α2µn, it follows that the first
three eigenvalues of the operator L1, equipped with periodic boundary condition on
[0, 2K(k)] are simple and λ0 < 0, λ1 = 0, λ2 > 0. The corresponding eigenfunctions
are ψ0(αx), ψ1(αx) = const.r′ and ψ2(αx).

In a similar way, with L2 = α2Λ2, one obtains in [0, 2K(k)]

Λ2 = − d2

dy2
− 2(1 + k2) + 6k2sn2(y; k) + ω/2α2.

To express ω through α and k, one should take into account the fact that in the cubic
equation we used to determine r0 and r1, the coefficient at ρ is zero. Therefore,

r0r1 + (r0 + r1)(
3
2
ω − r0 − r1) = 0.

As r0 = 2α2 +2α2k2 + 1
2
ω, r1 = 2α2 − 4α2k2 + 1

2
ω, after replacing these values in the

above equation one obtains ω2 = 16α4(1− k2 + k4). Since ω > 0, we finally obtain

Λ2 = − d2

dy2
+ 2(−1− k2 +

√
1− k2 + k4) + 6k2sn2(y; k).
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On the other hand, (2.5) yields

|r| = 2α2[1 + k2 +
√
1− k2 + k4 − 3k2sn2(y; k)].

The first three eigenvalues and corresponding eigenfunctions of Λ2 are as follows:

ǫ0 = 0, υ0 = r,

ǫ1 = 2− k2 + 2
√
1− k2 + k4, υ1 = dn′(y; k)

ǫ2 = 4
√
1− k2 + k4, υ2 = 1 + k2 −

√
1− k2 + k4 − 3k2sn2(y; k).

Estimates for M2.

From the above explanations we know that when considered in [0, T ], the operator L2

has an eigenfunction r corresponding to zero eigenvalue and the rest of the spectrum
is contained in (α2λ1,∞).

In the formulas which follow, we take r = r(x̄) with an argument x̄ = x− ξ − 2vt.
The values of ξ and η are chosen so that the infimum in (2.8) is attained at that point.
Therefore the derivative of d2q(u, ϕ) with respect to η is equal to zero. Together with
(2.2), this yields

0 = i
∫ T
0
hxe

−iηϕx − ϕxe
iηhx + q(he−iηϕ− ϕeiηh)dx

= 2Im
∫ T
0
(−ϕxx + qϕ)eiηhdx

=
∫ T
0
[(v2 − ω + q + |r|) rh2 + 2vr′h1]dx.

(2.11)

We set h2 = βr(x̄) + θ,
∫ T
0
θrdx = 0. Substituting in (2.11), we obtain

β||r||2
[
v2 − ω + q +

||r3/2||2
||r||2

]
+

∫ T

0

[θr|r|+ 2vr′h1]dx = 0.

Using that ||r3/2||2
||r||2 > ω (see estimate A1 of Appendix 1), we obtain the estimate

|β| ||r|| ≤

∣∣∣
∫ T
0
(θr|r|+ 2vr′h1)dx

∣∣∣
(v2 + q)||r||

≤ ||r2|| · ||θ||+ 2|v| ||r′|| · ||h1||
(v2 + q)||r||

≤ m0(||θ||+ ||h1||),
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where m0 = 2m1(v, ω)/(q + ω2) and

m1(v, ω) = max
c∈[− 1

3
ω3,0]

( ||r2||
||r|| ,

2|v| ||r′||
||r|| ,

2|| |r|r′||
||r′|| ,

|v||| |r|r− ωr||
||r′||

)
.

Clearly, the first and the third terms are uniformly bounded for ω fixed. The bound-
edness of the second and the fourth ones follows from the estimates in D1 of Appendix
1.(The third and fourth terms are included for later use.) We will use below that for
v and ω fixed, m0 → 0 when q → ∞. Further,

||h2|| ≤ |β| ||r||+ ||θ|| ≤ m0(||θ||+ ||h1||) + ||θ|| = (m0 + 1)||θ||+m0||h1||.

Hence, we obtain

||θ||2 ≥ ||h2||2
2(m0 + 1)2

−
(

m0

m0 + 1

)2

||h1||2. (2.12)

Since L2r = 0 and 〈θ, r〉 = 0, then from the spectral properties of the operator L2, it
follows

M2 = 〈L2h2, h2〉 = 〈L2θ, θ〉 ≥ α2ǫ1||θ||2.
From here and (2.12), one obtains

M2 ≥
α2ǫ1

2(m0 + 1)2
||h2||2 −

α2ǫ1m
2
0

(m0 + 1)2
||h1||2. (2.13)

Estimates for M1.

We set
h1 = γ1ψ0(x̄) + γ2r

′(x̄) + θ1, r(x̄) = νψ0(x̄) + ψ, (2.14)

where
〈θ1, ψ0〉 = 〈θ1, r′〉 = 〈ψ, ψ0〉 = 〈ψ0, r

′〉 = 〈ψ, r′〉 = 0 (2.15)

and γ1, γ2 and ν are some constants. By (2.15), we have

M1(h1) = 〈L1h1, h1〉 = γ21λ0〈ψ0, ψ0〉+ 〈L1θ1, θ1〉.

Therefore, from spectral properties of the operator L1 it follows

M1(h1) ≥ γ21λ0||ψ0||2 + λ2||θ1||2. (2.16)

The fundamental difficulty in the estimate of M1 is the appearance of the negative
term γ21λ0||ψ0||2. Below, we are going to estimate it. From the condition

P (u) =

∫ T

0

|h+ eiωηϕ(x− ξ, t)|2dx = P (ϕ)

we obtain

||h||2 = 2Re

∫ T

0

eiωηϕ(x− ξ, t)hdx = −2

∫ T

0

rh1dx.
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Then using (2.14), we have

−1

2
||h||2 = νγ1||ψ0||2 +

∫ T

0

ψθ1dx

and therefore

γ21 ||ψ0||2 =
1

ν2||ψ0||2
(
1

2
||h||2 +

∫ T

0

ψθ1dx

)2

. (2.17)

From (2.17), we obtain

γ21 ||ψ0||2 ≤
1

ν2||ψ0||2
(
1 + d

4
||h||4 + d+ 1

d
||ψ||2||θ1||2

)
, (2.18)

where d is a positive constant which will be fixed later. Using (2.17) and (2.16), we
derive the inequality

M1 ≥
(
λ2 + λ0(1 +

1

d
)

||ψ||2
ν2||ψ0||2

)
||θ1||2 +

λ0(1 + d)

4ν2||ψ0||2
||h||4 (2.19)

Below, we will denote by Cm, Dm positive constants. By using (2.18) and (2.19),
we derive the inequality

M1 ≥
(
λ2 + λ0(1 +

1
d
) ||ψ||2
ν2||ψ0||2

)
||θ1||2 + λ0(1+d)

4ν2||ψ0||2 ||h||
4

≥ C1λ2||θ1||2 −D1||h||4
(2.20)

(see the estimates in point C1 of the Appendix 1).
We denote ϑ = h1 − γ2r

′(x̄) = γ1ψ0(x̄) + θ1. Then from (2.14), (2.20), we have

||ϑ||2 = γ21 ||ψ0||2 + ||θ1||2 ≤
(
1 + (d+1)||ψ||2

dν2||ψ0||2

)
||θ1||2 + 1+d

4ν2||ψ0||2 ||h||
4

≤ C2||θ1||2 +D2||h||4.

Then

||θ1||2 ≥
||ϑ||2
C2

− D2||h||4

C2|a|
1

2

and hence, by (2.20),

M1 ≥
C1λ2
C2

||ϑ||2 − C1λ2D2 + C2D1

C2
||h||4. (2.21)

After differentiating (2.8) with respect to ξ and using (2.2), we obtain

0 = 2Re
∫ T
0
eiωη(ϕxxhx + qϕxh)dx

= 2Re
∫ T
0
[(r′′ + 2ivr′ − v2r)(h1x − ih2x − ivh1 − vh2) + q(r′ + ivr)(h1 − ih2)]dx

= 2
∫ T
0
[(−ω + 2|r|+ 3v2 + q)r′h1 + v(v2 − 3ω + 3|r|+ q)rh2]dx.

9



From (2.11), we have

∫ T

0

qrh2dx = −
∫ T

0

[(v2 − ω + |r|)rh2 + 2vr′h1]dx

and replacing in the above equality, we obtain

∫ T

0

[(−ω + 2|r|+ v2 + q)r′h1 + v(2|r| − 2ω)rh2]dx = 0.

Substituting h1 = γ2r
′(x̄) + ϑ in the above equality and using the orthogonality

condition 〈r′, ϑ〉 = 〈r′, γ1ψ0 + θ1〉 = 0, we obtain

γ2||r′||2
(
−ω + v2 + q +

2||√rr′||2
||r′||2

)
+

∫ T

0

[v(2|r| − 2ω)rh2 + 2|r|r′ϑ]dx = 0.

As 2||√rr′||2
||r′||2 ≥ ω (see estimate B1 from Appendix 1),

|γ2| ||r′|| ≤

∣∣∣
∫ T
0
[v(2|r| − 2ω)rh2 + 2|r|r′ϑ]dx

∣∣∣
(v2 + q)||r′||

≤ 2
|v| |||r|r− ωr|| · ||h2||+ 2|||r|r′|| · ||ϑ||

(v2 + q)||r′||
≤ m0(||ϑ||+ ||h2||).

Hence
||h1|| ≤ |γ2| ||r′||+ ||ϑ|| ≤ (m0 + 1)||ϑ||+m0||h2||,

which yields

||ϑ||2 ≥ ||h1||2
2(m0 + 1)2

−
(

m0

m0 + 1

)2

||h2||2.

Replacing in (2.21), we finally obtain

M1 ≥
C1λ2

C22(m0 + 1)2
||h1||2 −

C1λ2m
2
0

C2(m0 + 1)2
||h2||2 −

C1λ2D2 + C2D1

C2
|h||4. (2.22)

The estimate for ∆M .

From (2.13) and (2.22), we have (fixing q large and therefore m0 small enough)

M1 +M2 ≥
(
C1λ2−2C2α2ǫ1m2

0

2C2(m0+1)2

)
||h1||2 +

(
C2α2ǫ1−2C1λ2m2

0

2C2(m0+1)2

)
||h2||2

−C1λ2D2+C2D1

C2

||h||4 ≥ C3||h||2 −D3||h||4.
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On the other hand, estimating directly I2 from below (for this purpose we use its
initial formula), we obtain

I2 ≥ ||hx||2 +
∫ T
0
(ω + v2 − 2|ϕ|)|h|2dx− 2|v|

∫ T
0
|h| · |hx|dx

≥ ||hx||2 + (ω + v2 − 2max |r|)||h||2 − 2v2||h||2 − 1
2
||hx||2

= 1
2
||hx||2 + (ω − v2 − 2r0)||h||2.

Let 0 < m < 1
2
. We have

∆M = 2mI2 + (1− 2m)(M1 +M2) + I3

≥ m||hx||2 + 2m(ω − v2 − 2r0)||h||2 + (1− 2m)(C3||h||2 −D3||h||4) + I3

≥ m||hx||2 + [(2m(ω − v2 − 2r0) + (1− 2m)C3]||h||2 − (1− 2m)D3||h||4 − |I3|.

We choose m, so that 2mq = (1− 2m)C3 + 2m(ω − v2 − 2r0), i.e.

2m =
C3

q + C3 − ω + v2 + 2r0
.

From the continuity of |z| and |z|e−2iargz, we have

|I3| <
mq

2
||h||2

From the inequality

|h|2 ≤ 1

T

∫ T

0

|h|2dx+ 2

(∫ T

0

|h|2dx
∫ T

0

|hx|2dx
) 1

2

we obtain

|h|2 ≤ 1

T

∫ T

0

|h|2dx+√
q

∫ T

0

|h|2dx+ 1√
q

∫ T

0

|hx|2dx.

Hence for sufficiently large q, we obtain

max |h(x, t)|2 ≤ 2√
q
d2q(u, ϕ)

and moreover ||h||2 ≤ q−1d2q(u, ϕ). Consequently we can choose δ0 > 0, such that for

dq(u, ϕ) < δ0, we will have [max(4|a| 12 |h|+ |h|2) + (1− 2m)D3|a|
1

2 ]||h||2 ≤ qm.
Finally, we obtain that if dq(u, ϕ) < δ0, then ∆M ≥ md2q(u, ϕ). Proposition 2.1 is

completely proved. ✷

Proof of Theorem 2.1. We split the proof of our main result into two steps. We
begin with the special case P (u) = P (ϕ). Assume that m, q, δ0 have been selected
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according to Proposition 2.1. Since ∆M does not depend on t, t ∈ [0,∞), there exists
a constant l such that ∆M ≤ ld2(u, ϕ)|t=0. Below, we shall assume without loss of
generality that l ≥ 1, q ≥ 1.

Let

ε > 0, δ = min

((
m

lq

)
δ0
2
,
(m
l

)1/2
ε

)

and d(u, ϕ)|t=0 < δ. Then

dq(u, ϕ) ≤ q1/2d(u, ϕ)|t=0 <
δ0
2

and Lemma 2.2 yields that there exists a t0 > 0 such that dq(u, ϕ) < δ0 if t ∈ [0, t0).
Then, by virtue of Proposition 2.1 we have

∆M ≥ md2q(u, ϕ), t ∈ [0, t0).

Let tmax be the largest value such that

∆M ≥ md2q(u, ϕ), t ∈ [0, tmax).

We assume that tmax <∞. Then, for t ∈ [0, tmax] we have

d2q(u, ϕ) ≤
∆M

m
≤ l

m
d2(u, ϕ)|t=0 <

l

m
δ2 ≤ δ20

4
.

Applying once again Lemma 2.2, we obtain that there exists t1 > tmax such that

dq(u, ϕ) < δ0, t ∈ [0, t1).

By virtue of the proposition, this contradicts the assumption tmax < ∞. Conse-
quently, tmax = ∞,

∆M ≥ md2q(u, ϕ) ≥ md2(u, ϕ), t ∈ [0,∞).

Therefore,

d2(u, ϕ) ≤ ∆M

m
≤ l

m
δ2 < ε2, t ∈ [0,∞),

which proves the theorem in the special case.
Now we proceed to release the restriction P (u) = ||u||2 = ||ϕ||2 = P (ϕ). We have

||ϕ|| = (16α3
√
1− k2 + k4

[
(k2 − 2 +

√
1− k2 + k4)K(k) + 3E(k)

]
)1/2.

Below, we are going to apply a perturbation argument, freezing for a while the period
T and the parameters ω, c in (2.3). We claim there are respective parameter values
ω∗, c∗, and corresponding ϕ∗, r∗, α∗, k∗, see (2.2), (2.3) and (2.5), such that ϕ∗ has a
period T in x and moreover, ||ϕ∗|| = ||u||. By (2.9), we obtain the equations

2K(k∗)

α∗ − T = 0,

||r∗||2 − ||u||2 = 0.

(2.23)

12



Moreover, one has ||ϕ∗|| = ||u|| and we could use the restricted result we established
above. As k = k∗(T, ||ϕ||), α = α∗(T, ||ϕ||), it remains to apply the implicit function
theorem to (2.23). Since the corresponding Jacobian determinant reads

∣∣∣∣∣∣

∂
∂k∗

(
2K(k∗)
α∗

)
∂
∂α∗

(
2K(k∗)
α∗

)

∂
∂k∗

||r∗||2 ∂
∂α∗

||r∗||2

∣∣∣∣∣∣
> 0

the needed properties are established.

0.2 0.4 0.6 0.8 1

10000

20000

30000

40000

50000

60000

Figure 1: Graph of the Jacobian determinant

By (2.23) and our assumption, we have

K(k)

α
=
K(k∗)

α∗ =
T

2
. (2.24)

Next, choosing η = 2(ω∗ − ω)t, ξ = 0, we obtain inequality

d2(ϕ∗, ϕ) ≤ (1 + v2)||r∗ − r||2 + ||r∗′ − r
′||2.

Denote for while Φ(ρ) = 2α2(1−2k2+
√
1− k2 + k4+8k2cn2(αx; k)), where k = k(ρ)

is determined from K(k) = 1
2
ρT . Then r∗ − r = Φ(α∗)− Φ(α) = (α∗ − α)Φ′(ρ) with

some appropriate ρ. Moreover, |Φ′(ρ)| ≤ C0 with constant independent of the values
with ∗ accent. Hence |r∗− r| ≤ C0|α∗−α|. Similarly |r′∗− r′| ≤ C1|α∗−α|. All this,
together with (2.24) yields

d(ϕ∗, ϕ) ≤ C|α∗ − α|C =
2C

T
|K(k∗)−K(k)| = 2C

T
|K ′(k)||k∗ − k|. (2.25)

Let ε > 0. From the inequalities

|||ϕ∗|| − ||ϕ||| = |||u|| − ||ϕ||| ≤ d(u, ϕ)|t=0 < δ

it follows that
−||r||δ < (||ϕ||)−1||ϕ∗|| − 1 < ||r||δ

13



and, consequently, | ||r∗||2 − ||r||2 | < ||r||2δ1, where δ1 = (1 + ||r||δ)2 − 1.
On the other hand, we have (using (2.24) again)

| ||r∗||2 − ||r||2 |

= 27/2

T 3/2

∣∣∣(K(k∗))3/2
√
1− k∗2 + k∗4

[
(k∗2 − 2 +

√
1− k∗2 + k∗4K(k∗) + 3E(k∗)

]

−(K(k))3/2
√
1− k2 + k4

[
(k2 − 2 +

√
1− k2 + k4K(k) + 3E(k)

]∣∣

≥ C2||k∗ − k|,
(2.26)

Thus combining (2.25) and (2.26), we get

d(u, ϕ∗)|t=0 ≤ d(u, ϕ)|t=0 + d(ϕ, ϕ∗)|t=0 < δ + ||r||2C̃δ1 = δ0.

We select δ sufficiently small and apply the part of the theorem which has been
already proved,

d(u, ϕ∗)|t=0 < δ0 ⇒ d(u, ϕ∗) <
ε

2
, t ∈ [0,∞).

Choosing an appropriate δ > 0, we obtain that

d(u, ϕ) ≤ d(u, ϕ∗) + d(ϕ, ϕ∗) < ε,

for all t ∈ [0,∞). Theorem 2.1 is completely proved. ✷

3 Existence and stability of periodic traveling waves

for the cubic Schrödinger equation

Consider the cubic nonlinear Schrödinger equation

iut + uxx + |u|2u = 0, (3.1)

where u = u(x, t) is a complex-valued function of (x, t) ∈ R
2.

Equation (3.1) possesses the following family of traveling-wave solutions

ϕ(x, t) = ei(vx+(ω−v2)t)r(x− 2vt), (3.2)

where ω and v are real parameters and the real-valued function r(x) satisfies equation

r′′ − ωr + r3 = 0. (3.3)

Integrating once again, we obtain

r′2 − ωr2 +
1

2
r4 = c (3.4)

14



and r is a periodic function provided that the energy level set H(x, y) = c of the
Hamiltonian system dH = 0,

H(x, y) = y2 − ωx2 +
1

2
x4,

contains an oval (a simple closed real curve free of critical points). The level set
H(x, y) = c contains two periodic trajectories if ω > 0, c ∈ (−1

2
ω2, 0) and a unique

periodic trajectory if ω ∈ R, c > 0. Under these conditions, the solution of (3.3) is
determined by H(r, r′) = c and r is periodic of period T = T (ω, c).

Below, we are going to consider the case c < 0. Let us denote by r0 > r1 > 0
the positive roots of 1

2
r4 − ωr2 − c = 0. Then, up to a translation, we obtain the

respective explicit formulas

r(z) = ∓r0dn(αz; k), k2 =
r20 − r21
r20

=
−2ω + 2r20

r20
, α =

r0√
2
, T =

2K(k)

α
. (3.5)

Recall that K(k) and E(k) are, as usual, the complete elliptic integrals of the first
and second kind in a Legendre form. By (3.5), one also obtains ω = (2− k2)α2 and,
finally,

T =
2
√
2− k2K(k)√

ω
, k ∈ (0, 1), T ∈ I =

(
2π√
ω
,∞
)
. (3.6)

We take ω > 0, an energy level c ∈ (−1
2
ω2, 0) and let T be the (minimal) period

of r(x). Assume that v 6= 0 is chosen to satisfy vT/2π ∈ Z. Then there are two
periodic solutions r of (3.3): left (r < 0) and right (r > 0) and the corresponding
traveling-wave solution ϕ(x, t) is periodic with respect to x of period T .

Lemma 3.1. For any ω > 0 and T ∈ I, there is a constant c = c(ω) such that the

periodic traveling-wave solution (3.5) determined by H(r, r′) = c(ω) has a period T .
The function c(ω) is differentiable.

Proof. See [10], Lemma 3.1.

Equation (3.1) has the following conservation laws

Q(u) = i

∫ T

0

uxudx, P (u) =

∫ T

0

|u|2dx, Ẽ(u) =

∫ T

0

(|ux|2 −
|u|4
2

)dx.

Let us consider the functional

M̃(u) = Ẽ(u) + (ω + v2)P (u)− 2vQ(u).

Theorem 3.1. Let ϕ be given by (3.2), with r 6= 0. For each ε > 0 there exists

δ > 0 such that if u(x, t) is a solution of (3.1) and d(u, ϕ)|t=0 < δ, then d(u, ϕ) < ε
∀t ∈ [0,∞).

The crucial step in the proof will be to verify the following statement.
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Proposition 3.1. There exist positive constants m, q, δ0 such that if u is a periodic

solution of (3.1), u(x, t) = u(x+ T, t), P (u) = P (ϕ) and dq(u, ϕ) < δ0, then

M̃(u)− M̃(ϕ) ≥ md2q(u, ϕ). (3.7)

Proof. In order to estimate ∆M̃ = M̃(u)− M̃(ϕ), we set

u(x, t) = eiηϕ(x− ξ, t) + h(x, t),

ζ = v(x− ξ) + (ω + v2)t+ η,

and integrating by parts in the terms containing hx and hx, we obtain

∆M̃ = M̃(u)− M̃(ϕ)

= 2Re
∫ T
0
eiη[−ϕxx + (ω + v2 − |ϕ|2)ϕ+ 2ivϕx]hdx

+
∫ T
0
[|hx|2 + (ω + v2 − 2|ϕ|2)|h|2 − |ϕ|2Re(e−2iζh2)− 2ivhhx]dx

−1
2

∫ T
0
|h|2(4Re(eiηϕh) + |h|2)dx

= I1 + I2 + I3.

Using that r(x) satisfies the equation (3.3) we obtain that I1 = 0.
Let

h(x, t) = (h1 + ih2)e
iζ ,

where h1 and h2 are real periodic functions with period T . Using (2.10), for I2 we
obtain

I2 =

∫ T

0

[h21x + (ω − 3r2)h21]dx+

∫ T

0

[h22x + (ω − r2)h22]dx = M̃1 + M̃2

Introduce in L2[0, T ] the self-adjoint operators L1 and L2 generated by the differential
expressions

L1 = −∂2x + (ω − 3r2),

L2 = −∂2x + (ω − r2),
(3.8)

with periodic boundary conditions in [0, T ].

We use now (3.5) and (3.6) to rewrite operators L1, L2 in more appropriate form.
From the expression for r(x) from (3.5) and the relations between elliptic functions
sn(x), cn(x) and dn(x), we obtain

L1 = α2[−∂2y + 6k2sn2(y)− 4− k2]
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where y = αx.
It is well-known that the first five eigenvalues of Λ1 = −∂2y + 6k2sn2(y, k), with

periodic boundary conditions on [0, 4K(k)], where K(k) is the complete elliptic inte-
gral of the first kind, are simple. These eigenvalues and corresponding eigenfunctions
are:

ν0 = 2 + 2k2 − 2
√
1− k2 + k4, φ0(y) = 1− (1 + k2 −

√
1− k2 + k4)sn2(y, k),

ν1 = 1 + k2, φ1(y) = cn(y, k)dn(y, k) = sn′(y, k),

ν2 = 1 + 4k2, φ2(y) = sn(y, k)dn(y, k) = −cn′(y, k),

ν3 = 4 + k2, φ3(y) = sn(y, k)cn(y, k) = −k−2dn′(y, k),

ν4 = 2 + 2k2 + 2
√
1− k2 + k4, φ4(y) = 1− (1 + k2 +

√
1− k2 + k4)sn2(y, k).

It follows that the first three eigenvalues of the operator L1, equipped with periodic
boundary condition on [0, 2K(k)] (that is, in the case of left and right family), are
simple and λ0 = α2(ν0 − ν3) < 0, λ1 = α2(ν3 − ν3) = 0, λ2 = α2(ν4 − ν3) > 0. The
corresponding eigenfunctions are ψ0 = φ0(αx), ψ1 = r′(x), ψ2 = φ4(αx).

Similarly, for the operator L2 we have

L2 = α2[−∂2y + 2k2sn2(y, k)− k2]

in the case of left and right family. The spectrum of Λ2 = −∂2y+2k2sn2(y, k) is formed
by bands [k2, 1] ∪ [1 + k2,+∞). The first three eigenvalues and the corresponding
eigenfunctions with periodic boundary conditions on [0, 4K(k)] are simple and

ǫ0 = k2, θ0(y) = dn(y, k),

ǫ1 = 1, θ1(y) = cn(y, k),

ǫ2 = 1 + k2, θ2(y) = sn(y, k).

From (3.4) it follows that zero is an eigenvalue of L2 and it is the first eigenvalue
in the case of left and right family, with corresponding eigenfunction r(x).

Estimates for M̃2.

As in Section 2, we use below r = r(x̄) with an argument x̄ = x − ξ − 2vt. From
the explanations above, we know that when considered in [0, T ], the operator L2 has
an eigenfunction r corresponding to zero eigenvalue and the rest of the spectrum is
contained in (α2,∞).

The derivative of d2q(u, ϕ) with respect to η at the point where the minimum is
attained is equal to zero. Together with (3.3), this yields

∫ T

0

[(
v2 − ω + q + r2

)
rh2 + 2vr′h1

]
dx = 0 (3.9)
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We set h2 = βr(x̄) + θ,
∫ T
0
θrdx = 0. Substituting in (3.9), we obtain

β||r||2
[
v2 − ω + q +

||r2||2
||r||2

]
+

∫ T

0

[θr3 + 2vr′h1]dx = 0.

Using that 2||r2||2
||r||2 ≥ w (see estimate A2 of the Appendix2), we obtain the estimate

|β| ||r|| ≤

∣∣∣
∫ T
0
(θr3 + 2vr′h1)dx

∣∣∣
(q + v2)||r||

≤ ||r3|| · ||θ||+ 2|v| ||r′|| · ||h1||
(q + v2)||r||

≤ m0(||θ||+ ||h1||),

where m0 = 2m1(v, ω)/(q + ω2) and

m1(v, ω) = max
c∈[− 1

2
ω2,0]

( ||r3||
||r|| ,

2|v| ||r′||
||r|| ,

2|v| ||r3 − ωr||
||r′|| ,

3||r2r′||
||r′||

)

(the third and fourth item are included for later use). It is obvious that the first and
the last fractions are bounded. For the second and the third ones, see estimates D2
in Appendix 2. We will use below that for v and ω fixed, m0 → 0 when q → ∞.
Further,

||h2|| ≤ |β| ||r||+ ||θ|| ≤ m0(||θ||+ ||h1||) + ||θ|| = (m0 + 1)||θ||+m0||h1||.

Hence, we obtain

||θ||2 ≥ ||h2||2
2(m0 + 1)2

−
(

m0

m0 + 1

)2

||h1||2. (3.10)

Since L2r = 0 and 〈θ, r〉 = 0, then from the spectral properties of the operator L2, it
follows

M2 = 〈L2h2, h2〉 = 〈L2θ, θ〉 ≥ α2〈θ, θ〉 ≥ ω

2
||θ||2.

From here and (3.10), one obtains

M2 ≥
ω

4(m0 + 1)2
||h2||2 −

ωm2
0

2(m0 + 1)2
||h1||2. (3.11)

Estimates for M̃1.

We set
h1 = γ1ψ0(x̄) + γ2r

′(x̄) + θ1, r(x̄) = νψ0(x̄) + ψ, (3.12)

where
〈θ1, ψ0〉 = 〈θ1, r′〉 = 〈ψ, ψ0〉 = 〈ψ0, r

′〉 = 〈ψ, r′〉 = 0 (3.13)
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and γ1, γ2 and ν are some constants. As the same line as for M1, we obtain

γ21 ||ψ0||2 =
1

ν2||ψ0||2
(
1

2
||h||2 +

∫ T

0

ψθ1dx

)2

. (3.14)

and
M̃1 ≥

(
λ2 + λ0(1 +

1
d
) ||ψ||2
ν2||ψ0||2

)
||θ1||2 + λ0(1+d)

4ν2||ψ0||2 ||h||
4

≥ C1λ2||θ1||2 −D1w||h||4.
(3.15)

(see the estimates in point C2 of the Appendix2).
We denote ϑ = h1 − γ2r

′(x̄) = γ1ψ0(x̄) + θ1. Then from (3.14), (3.15) and (since
λ2 = −ω +

√
4ω2 + 6c and λ2 = −ω −

√
4ω2 + 6c the inequalities λ2 ≤ 1

3
|λ0| ≤ w, we

have

||ϑ||2 = γ21 ||ψ0||2 + ||θ1||2 ≤
(
1 + (d+1)||ψ||2

dν2||ψ0||2

)
||θ1||2 + 1+d

4ν2||ψ0||2 ||h||
4

≤ C2||θ1||2 +D2ω
− 1

2 ||h||4.

Then

||θ1||2 ≥
||ϑ||2
C2

− D2||h||4

C2ω
1

2

and hence, by (3.15) and λ2 ≤ w,

M1 ≥ C1λ2
C2

||ϑ||2 − C1D2 + C2D1

C2
ω

1

2 ||h||4

= C3λ2||ϑ||2 −D3ω
1

2 ||h||4.
(3.16)

After differentiating (2.8) with respect to ξ and using (3.3), we obtain

0 = 2Re
∫ T
0
eiη(ϕxxhx + qϕxh)dx

= 2
∫ T
0
[(−ω + 3v2 + 3r2 + q)r′h1 + v(−3ω + v2 + 3r2 + q)rh2]dx.

From (3.9), we have

∫ T

0

qrh2dx = −
∫ T

0

[2vr′h1 + (−ω + v2 + r2)rh2]dx

and replacing in the above equality, we obtain

∫ T

0

[(−ω + v2 + 3r2 + q)r′h1 + v(−2ω + 2r2)rh2]dx = 0.

Substituting h1 = γ2r
′(x̄) + ϑ in the above equality and using the orthogonality

condition 〈r′, ϑ〉 = 〈r′, γ1ψ0 + θ1〉 = 0, we obtain

γ2||r′||2
(
−ω + v2 + q +

3||rr′||2
||r′||2

)
+

∫ T

0

[2v(−ω + r2)rh2 + 3r2r′ϑ]dx = 0.
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Using that 3||rr′||2
||r′||2 ≥ ω (see the estimates in point B2 of the Appendix2), we further

have

|γ2| ||r′|| ≤

∣∣∣
∫ T
0
[2v(−ω + r2)rh2 + 3r2r′ϑ]dx

∣∣∣
(v2 + q)||r′||

≤ 2|v| || − ωr + r3|| · ||h2||+ 3||r2r′|| · ||ϑ||
(v2 + q)||r′||

≤ m0(||ϑ||+ ||h2||).
Hence

||h1|| ≤ |γ2| ||r′||+ ||ϑ|| ≤ (m0 + 1)||ϑ||+m0||h2||,
which yields

||ϑ||2 ≥ ||h1||2
2(m0 + 1)2

−
(

m0

m0 + 1

)2

||h2||2.

Replacing in (3.16), we finally obtain

M1 ≥
C3λ2

2(m0 + 1)2
||h1||2 −

C3λ2m
2
0

(m0 + 1)2
||h2||2 −D3ω

1

2 |h||4. (3.17)

The estimate for ∆M .

From (3.11) and (3.17), one obtains

M1 +M2 ≥
C3λ2 − ωm2

0

2(m0 + 1)2
||h1||2 +

ω − 4C3λ2m
2
0

4(m0 + 1)2
||h2||2 −D3ω

1

2 ||h||4.

We now fix q so that ωm2
0 ≤ 1

2
C3λ2 and assuming that C3 ≤ 1

2
(which is no loss of

generality), one has also 4C3λ2m
2
0 ≤ 1

2
ω. Therefore we come to

M1 +M2 ≥ C4λ2(||h1||2 + ||h2||2)−D3ω
1

2 ||h||4 = C4λ2||h||2 −D3ω
1

2 ||h||4

where C4 and D3 are absolute positive constants independent on the parameters of
the system.

On the other hand, estimating directly I2 from below (for this purpose we use its
initial formula), we have

I2 ≥ ||hx||2 +
∫ T
0
(ω + v2 − 2r2)|h|2dx− 2|v|

∫ T
0
|h| · |hx|dx−

∫ T
0
r2|h|2dx

≥ ||hx||2 + (ω + v2 − 2r20)||h||2 − 2v2||h||2 − 1
2
||hx||2 − r20||h||2

= 1
2
||hx||2 − (v2 + 5ω)||h||2.
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Similarly, |I3| ≤ max(4|2ω| 12 |h|+ |h|2)||h||2. Let 0 < m < 1
2
. We obtain

∆M = 2mI2 + (1− 2m)(M1 +M2) + I3

≥ m||hx||2 − 2m(v2 + 5ω)||h||2 + (1− 2m)(C4λ2||h||2 −D3ω
1

2 ||h||4)
−max(4|2ω| 12 |h|+ |h|2)||h||2

= m||hx||2 + [−2m(v2 + 5ω) + (1− 2m)C4λ2] ||h||2

−[max(4|2ω| 12 |h|+ |h|2) + (1− 2m)D3ω
1

2 ||h||2]||h||2.

We choose m, so that

2qm = (1− 2m)C4λ2 − 2m(v2 + 5ω), i.e. 2m =
C4λ2

q + v2 + 5ω + C4λ2
< 1.

From the inequality

|h|2 ≤ 1

T

∫ T

0

|h|2dx+ 2

(∫ T

0

|h|2dx
∫ T

0

|hx|2dx
) 1

2

we obtain

|h|2 ≤ 1

T

∫ T

0

|h|2dx+√
q

∫ T

0

|h|2dx+ 1√
q

∫ T

0

|hx|2dx.

Hence for sufficiently large q, we obtain

max |h(x, t)|2 ≤ 2√
q
d2q(u, ϕ)

and moreover ||h||2 ≤ q−1d2q(u, ϕ). Consequently we can choose δ0 > 0, such that for

dq(u, ϕ) < δ0, we will have [max(4|2ω| 12 |h|+ |h|2) + (1− 2m)D3ω
1

2 ]||h||2 ≤ qm.
Finally, we obtain that if dq(u, ϕ) < δ0, then ∆M ≥ md2q(u, ϕ). Proposition 3.1 is

completely proved. ✷

Proof of Theorem 3.1. The proof of the theorem in the case P (u) = ||u||2 =
||ϕ||2 = P (ϕ) is the same as in Theorem 2.1. If P (u) 6= P (ϕ), we proceed similarly
as in Theorem 2.1. We have ||ϕ|| = (2

√
2r0E(k))

1/2, where r0 is given by (3.5).
We claim there are respective parameter values ω∗, c∗, and corresponding ϕ∗, r∗, r∗0,

k∗, see (3.5) and (3.6), such that ϕ∗ has a period T in x and moreover, 2
√
2r∗0E(k

∗) =
||u||2. By (3.5), we obtain the equations

2
√
2K(k∗)

r∗0
− T = 0,

2
√
2r∗0E(k

∗)− ||u||2 = 0.

(3.18)

If (3.18) has a solution k∗ = k∗(T, ||u||), r∗0 = r∗0(T, ||u||), then the parameter values
we need are given by

2w∗ = (2− k∗2)r∗0
2, 2c∗ = (k∗2 − 1)r∗0

4.
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Moreover, one has ||ϕ∗|| = ||u|| and we could use the restricted result we established
above. As k = k∗(T, ||ϕ||), r0 = r∗0(T, ||ϕ||), it remains to apply the implicit function
theorem to (3.18). Since the corresponding Jacobian determinant reads

∣∣∣∣∣

2
√
2K ′(k∗)
r∗
0

−2
√
2K(k∗)

r∗
0

2

2
√
2r∗0E

′(k∗) 2
√
2E(k∗)

∣∣∣∣∣ =
8

r∗0
(KE)′ > 0

the existence of ω∗ and c∗ with the needed properties is established.
By (3.18) and our assumption, we have

2
√
2K(k∗)

r∗0
=

2
√
2K(k)

r0
= T. (3.19)

Choosing η = 2(ω∗ − ω)t, ξ = 0, we obtain the inequality

d2(ϕ∗, ϕ) ≤ (1 + v2)||r∗ − r||2 + ||r∗′ − r
′||2

For Φ(ρ) = ρdn(zρ, k(ρ)), where k = k(ρ) is determined from K(k) = 1
2
ρT , we

get r∗ − r = Φ(r∗0) − Φ(r0) = (r∗0 − r0)Φ
′(ρ) with some appropriate ρ. Moreover,

|Φ′(ρ)| ≤ C0. Hence |r∗ − r| ≤ C0|r∗0 − r0|, |r∗
′ − r′| ≤ C1|r∗0 − r0|, and by (3.19)

d(ϕ∗, ϕ) ≤ |r∗0 − r0| ≤
2
√
2C

T
|K(k∗)−K(k)| ≤ 2

√
2C

T
|K ′(k)||k∗ − k|.

From the inequalities

|||ϕ∗|| − ||ϕ||| = |||u|| − ||ϕ||| ≤ d(u, ϕ)|t=0 < δ

it follows that

−
(
2
√
2r0E

)−1/2

δ < (||ϕ||)−1||ϕ∗|| − 1 <
(
2
√
2r0E

)−1/2

δ

and, therefore, 1 − δ1 <
r∗
0
E(κ∗)|
r0E

< 1 + δ1, i.e. |r∗0E(κ∗) − r0E| < r0Eδ1, where

δ1 = (1 + (2r0E)
−1/2δ)2 − 1. On the other hand

|r∗0E(k∗)−r0E(k)| =
2
√
2

T
|K(k∗)E(k∗)−K(k)E(k)| = 2

√
2

T
|(KE)′(k)||k∗−k| ≥ C2|k∗−k|,

with appropriate C2 > 0. Thus

d(u, ϕ∗)|t=0 ≤ d(u, ϕ)|t=0 + d(ϕ, ϕ∗)|t=0 < δ + r0EC̃δ1 = δ0.

The rest of the proof is the same as in Theorem 2.1. ✷
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4 Appendix 1

Below, we provide some estimates needed in our proofs concerning the quadratic
Schrödinger equation. Without loss of generality, we will assume that r > 0. The
case of negative r is dealt with by changing r → −r in all equations from Section 1.

For n ∈ Z and c ∈ (−1
3
ω3, 0), consider the line integrals In(c) and their derivatives

I ′n(c) given by

In(c) =

∮

H=c

xnydx, I ′n(c) =

∮

H=c

xndx

2y
(4.1)

where the integration is along the right oval contained in the level set {H = c} and
H(x, y) = y2 − ωx2 + 2

3
x3. These integrals would be useful because

∫ T

0

rn(t)dt = 2

∫ 1

2
T

0

rn(t)dt = 2

∫ r0

r1

xndx√
c+ ωx2 − 2

3
x3

=

∮

H=c

xndx

y
= 2I ′n(c). (4.2)

(we applied a change of the variable r(t) = x in the integral and used equation (2.3)).
The properties of In are well known, see e.g. [9] for a similar treatment. Below, we
list some facts we are going to use.

Lemma. (i) The following identity holds:

3ncIn−1 + 3ω(n+ 3)In+1 − (2n+ 9)In+2 = 0, n ∈ Z

which implies

I2 = ωI1, I3 =
3
11
cI0 +

12
11
ω2I1, I4 =

45
143
cωI0 + ( 6

13
c+ 180

143
ω3)I1, (4.3)

(ii) The integrals I0 and I1 satisfy the system

6cI ′0 + 2ω2I ′1 = 5I0,

6ωcI ′0 + (30c+ 12ω3)I ′1 = 35I1.

(iii) The ratio R(c) = I ′1(c)/I
′
0(c) satisfies the Riccati equation and related system

6c(3c+ ω3)R′(c) = ω2R2(c) + 6cR(c)− 3ωc,
ċ = 6c(3c+ ω3),

Ṙ = ω2R2 + 6cR− 3ωc,
(4.4)

which imply estimates

− 3c

ω2
≤ R(c) ≤ 5ω

6
− c

2ω2
. (4.5)

The equations in (i)–(iii) are derived in a standard way, see [9] for more details.
The estimates (4.5) follow from the fact that, in the (c, R)-plane, the graph of R(c)
coincides with the concave separatrix trajectory of the system (4.4) contained in the
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triangle with vertices (0, 0), (−1
3
ω3, ω) and (0, 5ω

6
) and connecting the first two of

them.
After this preparation, we turn to prove the estimates we used in the preceding

Section 2.

A1. The estimate for A1 = ||r3/2||2
||r||2 . By (4.2), (4.3) and the first inequality in

(4.5), we have

A1 =

∫ T
0
r3dt

∫ T
0
r2dt

=
I ′3
I ′2

=
3

5

cI ′0 + 2ω2I ′1
ωI ′1

=
3c

5ωR
+

6ω

5
≥ ω.

B1. The estimate for B1 =
2||r1/2r′||2

||r′||2 . By (2.3) and (4.3), we have as above

B1 =
2
∫ T
0
r(c+ ωr2 − 2

3
r3)dt

∫ T
0
(c+ ωr2 − 2

3
r3)dt

=
2(cI ′1 + ωI ′3 − 2

3
I ′4)

cI ′0 + ωI ′2 − 2
3
I ′3

=
6

7

cωI ′0 + (5c+ 2ω3)I ′1
3cI ′0 + ω2I ′1

=
6

7

cω + (5c+ 2ω3)R

3c+ ω2R
≥ 12

7
ω.

To obtain the last inequality, we used both estimates in (4.5).

C1. The estimate for C1 = λ2 + λ0(1 +
1
d
) ||ψ||2
ν2||ψ0||2 . By (2.14) and (2.15) we have

||ψ||2 = ||r||2 − ν2||ψ0||2, where ν =
〈r, ψ0〉
||ψ0||2

.

Therefore

C1 = λ2 + λ0

(
1 +

1

d

)( ||r||2||ψ0||2
〈r, ψ0〉2

− 1

)
.

Below, we need to use the following well-known equalities (see e.g. [7]) which are
written out here for reader’s convenience:

(i)
∫ K
0
dn2xdx = E(k)

(ii)
∫ K
0
dn4xdx = 4−2k2

3
E(k) + k2−1

3
K(k)

(iii)
∫ K
0
dn6xdx = 8k4−23k2+23

15
E(k) + 4(k2−1)(2−k2)

15
K(k)

(iv)
∫ K
0
dn2xsn2xdx = 2k2−1

3k2
E(k) + 1−k2

3k2
K(k)

(iv)
∫ K
0
dn2xsn4xdx = 8k4−3k2−2

15k4
E(k) + 2(1−k2)(1+2k2)

15k4
K(k)

(v)
∫ 2K

0
cn2xdx = 2

k2
[E(k) + (k2 − 1)K(k)]

(vi)
∫ 2K

0
sn2xdx = 2

k2
[K(k)−E(k)]
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(vii)
∫ K
0
dnxdx =

∫ 2K

0
dnxsn2xdx =

∫ 2K

0
dnxcn2xdx = π/2

(viii)
∫ 2K

0
dnxsn2xcn2xdx = π/8

(ix)
∫ 2π

0
dn3xdx = 2−k2

2
π

Now, we first recall that

r(x) = α2[1 + k2 +
√
1− k2 + k4 − 3k2sn2(αx; k)],

ψ0(x) = dn(x; k)[1− (1 + 2k2 −
√
1− k2 + 4k4)sn2(x; k)] > 0.

From (2.2), we obtain after integration

||r||2 = w

∫ T

0

r(x)dx = wr1T + w(r0 − r1)

∫ T

0

cn2(αx)dx.

Then, by using (v) and the expressions of ω, r1 etc, we calculate

||r||2 = 16α3
√
1− k2 + k4[(k2 − 2 +

√
1− k2 + k4)K(k) + 3E(k)]

Similarly, by direct calculations and making use of (i)-(ix), we come to the expressions

||ψ0||2 =
4

α

√
1− k2 + 4k4

15k4
{(k2 − 1)[(8k4 + 3k2 + 2)− 2(2k2 + 1)

√
1− k2 + 4k4]K(k)

+[(8k4 − 3k2 − 2)
√
1− k2 + 4k4 − 2(8k6 − 4k4 − k2 − 1)]E(k)}.

〈r, ψ0〉 = πα[(1 + k2 +
√
1− k2 + k4)(1− 2k2 +

√
1− k2 + 4k4)

−9k2

4
(
1

3
− 2k2 +

√
1− k2 + 4k4)]

Next, calculating the asymptotical expansions near k = 0, we obtain

||r||2 = 16πα3(1− 3
4
k2 + 39

64
k4 + . . .)

〈r, ψ0〉 = 4πα(1− 7
4
k2 + 71

32
k4 + . . .)

||ψ0||2 =
π

α

√
1− k2 + 4k4(1− 9

4
k2 + 135

64
k4 + . . .)

−λ0
λ2 − λ0

=
1− 1

2
k2 + 15

16
k4 + . . .√

1− k2 + 4k4

and, finally,
−λ0

λ2 − λ0

||r||2||ψ0||2
〈r, ψ0〉2

= 1− 21

32
k4 +O(k6). (4.6)

Let us denote by 1−δ the right-hand side of (4.6). Clearly, δ = δ(k) satisfies 1 > δ > 0
for k small enough, say 0 < k ≤ k0. Fixing such a small k, then (4.6) yields

||r||2||ψ0||2
〈r, ψ0〉2

= (1− δ)

(
1− λ2

λ0

)
≤ 1 +

λ2
λ0

(δ − 1).
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Therefore

C1 = λ2 + λ0

(
1 +

1

d

)( ||r||2||ψ0||2
〈r, ψ0〉2

− 1

)
≥ λ2

[
1 +

(
1 +

1

d

)
(δ − 1)

]
= Cλ2

where C is a positive constant, provided that d is chosen sufficiently large. Note
that the above estimate is not uniform in k when k tends to zero. This is because
δ = O(k4) and hence d = O(k−4).

When k ≥ k0, we can simply draw the graph of the corresponding function f(k) =
||r||2||ψ0||2
〈r,ψ0〉2 −1+ λ2

λ0
to see that it is negative and placed far from zero. Hence, C1 ≥ Cλ2,

too (uniformly for k ≥ k0).

0.2 0.4 0.6 0.8 1

-0.5

-0.4

-0.3

-0.2

-0.1

Figure 2: Graph of f(k) < 0

D1. The estimates for D11 =
||r2−ωr||

||r′|| and D12 =
||r′||
||r|| . Making use of statements

(i) and (ii) of the Lemma, we have

D2
11 =

∫ T
0
(r2 − ωr)2dt

∫ T
0
(c+ ωr2 − 2

3
r3)dt

=
ω2I ′2 − 2ωI ′3 + I ′4
cI ′0 + ωI ′2 − 2

3
I ′3

=
5

7
.
−3cωI ′0 + (6c+ ω3)I ′1

3cI ′0 + ω2I ′1
=

−ωI0 + 2I1
I0

≤ 2ω.

The last inequality follows from the fact that the periodic trajectories of the Hamil-
tonian system lie inside the saddle loop, in the domain H(x, y) < 0 which implies
y2 < x2(ω − 2

3
x) and x < 3

2
ω.

Similarly,

D2
12 =

∫ T
0
(c+ ωr2 − 2

3
r3)dt

∫ T
0
r2dt

=
cI ′0 + ωI ′2 − 2

3
I ′3

I ′2

=
3cI ′0 + ω2I ′1

5ωI ′1
=

(3c+ ω3)I0
ω(7I1 − ωI0)

≤ 3c+ ω3

5ω2
.
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The last inequality is due to the known fact [14] (Theorem 12), that the function
Q(c) = I1(c)/I0(c) is strictly decreasing, therefore Q(c) > Q(0) = 6

7
ω, the value

obtained by direct calculation of elementary integrals.

5 Appendix 2

First of all, let us mention that the operator L1, defined by differential expression
(3.8) and equipped with periodic boundary conditions in [0, T ], has the following
spectral data

λ0 = −ω −
√
4ω2 + 6c, ψ0 = 3r2 − 3ω − λ0,

λ1 = 0, ψ1 = r′,

λ2 = −ω +
√
4ω2 + 6c, ψ2 = 3r2 − 3ω − λ2.

(5.1)

For n ∈ Z and c ∈ (−1
2
ω2, 0), consider the line integrals In(c) and their derivatives

I ′n(c) given by

In(c) =

∮

H=c

xnydx, In(c) =

∮

H=c

xndx

2y
(5.2)

where one can assume for definiteness that the integration is along the right oval
contained in the level set {H = c}, H(x, y) = y2 − ωx2 + 1

2
x4. As above, these

integrals satisfy I ′n(c) =
1
2

∫ T
0
rn(z)dz. The properties of In are well known. We only

list some facts we are going to use.

Lemma. (i) The following identity holds:

(n+ 6)In+3 − 2ω(n+ 3)In+1 − 2ncIn−1 = 0, n ∈ Z

which implies

I3 = ωI1, I4 =
2c

7
I0 +

8ω

7
I2, I6 =

8ωc

21
I0 +

(
2c

3
+

32ω2

21

)
I2. (5.3)

(ii) The integrals I0 and I2 satisfy the system

4cI ′0 + 2ωI ′2 = 3I0,

4ωcI ′0 + (12c+ 8ω2)I ′2 = 15I2.

(iii) The ratio R(c) = I ′2(c)/I
′
0(c) satisfies the Riccati equation and related system

(8c2 + 4ω2c)R′(c) = −2ωc+ 4cR(c) + ωR2(c),
ċ = 8c2 + 4ω2c,

Ṙ = −2ωc+ 4cR + ωR2,
(5.4)

which imply estimates

− 2c

ω
≤ R(c) ≤ − c

2ω
+

3ω

4
. (5.5)
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The equations in (i)–(iii) are derived in a standard way, see [9] for more details.
The estimates (5.5) follow from the fact that, in the (c, R)-plane, the graph of R(c)
coincides with the concave separatrix trajectory of the system (5.4) contained in the
triangle with vertices (0, 0), (−1

2
ω2, ω) and (0, 3

4
ω) and connecting the first two of

them. Note that R′(c) = −1/(2ω) at c = −1
2
ω2. We also use analyticity of the ratio

R(c) at this point and properties of the phase portrait of (5.4) to verify the above
statements.

After this preparation, we turn to prove the estimates we used in the preceding
sections.

A2. The estimate for A2 =
||r2||2
||r||2 . By (4.2), (5.3) and the first inequality in (5.5),

we have

A2 =

∫ T
0
r4dt

∫ T
0
r2dt

=
I ′4
I ′2

=
2cI ′0 + 4ωI ′2

3I ′2
=

2c

3R
+

4ω

3
≥ ω.

B2. The estimate for B2 =
||rr′||2
||r′||2 . As I

′
6 =

16ωc

15
I ′0 +

(
6c

5
+

32ω2

15

)
I ′2, we have by

(3.4) as above

B2 =

∫ T
0
r2(c+ ωr2 − 1

2
r4)dt

∫ T
0
(c+ ωr2 − 1

2
r4)dt

=
2cI ′2 + 2ωI ′4 − I ′6
2cI ′0 + 2ωI ′2 − I ′4

=
2

5

ωcI ′0 + (3c+ 3ω2)I ′2
2cI ′0 + ωI ′2

=
2

5

ωc+ (3c+ 2ω2)R

2c+ ωR
≥ 4ω

5
.

To obtain the last inequality, we used both estimates in (5.5).

C2. The estimate for C2 = λ2 + λ0(1 +
1
d
) ||ψ||2
ν2||ψ0||2 . By (3.12) and (3.13) we have

C2 = λ2 + λ0

(
1 +

1

d

)( ||r||2||ψ0||2
〈r, ψ0〉2

− 1

)
.

Next,

〈r, ψ0〉 =
∫ T

0

[3r3 − (3ω + λ0)r]dt = 6I ′3 − (6ω + 2λ0)I
′
1 = −2λ0I

′
1,

||r||2||ψ0||2 =
∫ T
0
r2dt

∫ T
0
(3r2 − 3ω − λ0)

2dt

= 4I ′2[9I
′
4 − (18ω + 6λ0)I

′
2 + (3ω + λ0)

2I ′0]

= 4I ′2[(6c+ (3ω + λ0)
2)I ′0 − (6ω + 6λ0)I

′
2].

By (3.5), we have

I ′2(c) =
1

2

∫ T

0

r2dt = (r20/α)

∫ K(k)

0

dn2(t)dt =
√
2r0E(k). (5.6)
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Making use of the identity E(k) = 1
2
πF (1

2
,−1

2
, 1, k2) where F is the Gauss hyperge-

ometric function, we obtain an appropriate expansion to estimate E from above

E(k) =
π

2

(
1− k2

4
− 3k4

64
− 5k6

512
− . . . ,

)
, E2(k) ≤ π2

4

(
1− k2

2
− k4

32

)

with all removed terms negative. As I ′1 =
1√
2
π, by (3.5) this implies

I ′22 ≤ −I ′21
ω2 − 10ωr20 + r40

8r20
.

Together with I ′0I
′
2 ≥ I ′21 , this yields

||r||2||ψ0||2
〈r, ψ0〉2

− 1 ≤ 1

λ20

[
6c+ (3ω + λ0)

2 +
3

4r20
(ω + λ0)(ω

2 − 10ωr20 + r40)

]
− 1

=
λ2
λ0

(
λ2 + ω

4r20
− 1

)
≤ λ2
λ0

(√
3

8
− 1

)

where the equality is obtained by direct calculations. Therefore,

C2 ≥ λ2

(
−1

d
+
d+ 1

d

√
3

8

)
= C̄2λ2

with C̄2 > 0 an absolute constant when d ≥ 4 is fixed.
As a by-product of our calculations, we easily obtain also the estimate

λ0
ν2||ψ0||2

=
λ0||ψ0||2
〈r, ψ0〉2

≥ λ2(
√
3
8
− 1) + λ0

||r||2 ≥ −D1ω
1

2 .

D2. The estimates for D21 =
||r3−ωr||

||r′|| and D22 =
||r′||
||r|| . We proceed as in case D1

above. Making use of statements (i) and (ii) of the Lemma, we have

D2
21 =

∫ T
0
(ω2r2 − 2ωr4 + r6)dt
∫ T
0
(c+ ωr2 − 1

2
r4)dt

=
ω2I ′2 − 2ωI ′4 + I ′6
cI ′0 + ωI ′2 − 1

2
I ′4

=
−4cωI ′0 + (18c+ 7ω2)I ′2

5(2cI ′0 + ωI ′2)
=

−ωI0 + 3I2
I0

≤ 5ω.

Similarly,

D2
22 =

∫ T
0
(c+ ωr2 − 1

2
r4)dt

∫ T
0
r2dt

=
cI ′0 + ωI ′2 − 1

2
I ′4

I ′2

=
2cI ′0 + ωI ′2

3I ′2
=

(2c+ ω2)I0
5I2 − ωI0

≤ 2c+ ω2

3ω
.

As before, we used that I2(c)/I0(c) is a decreasing function and calculated the value
I2(0)/I0(0) =

4
5
ω.
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