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Abstract. An in-house, fully parallel compressible Navier-Stokes solver was developed based
on an implicit, non-dissipative, energy conserving, finite-volume algorithm. PETSc software was
utilized for this purpose. To be able to handle occasional instances of slow convergence due to
possible oscillating pressure corrections on successive iterations in time, a fixing procedure was
adopted. To demonstrate the algorithms ability to evolve a linear perturbation into nonlinear
hydrodynamic turbulence, temporal Kelvin-Helmholtz Instability problem is studied. KHI
occurs when a perturbation is introduced into a system with a velocity shear. The theory can be
used to predict the onset of instability and transition to turbulence in fluids moving at various
speeds. In this study, growth rate of the instability was compared to predictions from linear
theory using a single mode perturbation in the linear regime. Effect of various factors on growth
rate was also discussed. Compressible KHI is most unstable in subsonic/transonic regime. High
Reynolds number (low viscosity) allows perturbations to develop easily, in consistent with the
nature of KHI. Higher wave numbers (shorter wavelengths) also grow faster. These results
match with the findings of stability analysis, as well as other results presented in the literature.

1. Introduction

Kelvin-Helmholtz Instability (KHI) occurs when a perturbation is introduced into a system with
a velocity shear (Batchelor, 1967). It is subject to many physical and engineering topics such as
turbulent mixing, astrophysical jets and aerodynamic wake flows. Linear stability theory can be
used to predict the onset of instability and transition to turbulence for such flows. The dispersion
relation which relates growth of the instability (ωg) to wave number (kx) is given by stability

analysis as ωg = kx
√
ρ1ρ2

ρ1+ρ2
|∆v| for inviscid and incompressible flows with an infinitesimally thin

shear layer where ρ1 and ρ2 are densities and ∆v is velocity difference between layers. kx is
2π/λ where λ is wavelength. Growth is directly proportional to wave number in the direction
of the flow so that smaller waves grow faster. This is also valid for compressible flows. Michalke
(1964) studied hyperbolic tangent velocity profile and showed that fastest growing modes are
the ones whose wavelength is comparable to shear layer thickness a, kxa ≈ 1. Blumen (1970)
extended this study to compressible flows and found that shear layer is unstable, when Mach
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number (M = v0/cs) is between 0 and
√

2 where v0 is initial freestream velocity and cs is speed
of sound. Mach number for the most unstable case was also predicted as

√
3/2.

In this study, growth rate of the instability is studied using an implicit, non-dissipative, direct
numerical simulation (DNS) algorithm proposed by Hou & Mahesh (2005). For this purpose, an
in-house fully parallel DNS solver based on this algorithm was developed using PETSc (Balay
et al, 1997). Effects of different Mach numbers, Reynolds numbers (Re) and wave numbers on
the development of the instability in terms of growth rate are discussed. Results are compared
to linear theory, as well as results those available in literature.

Rest of the paper is organized as follows. In section 2, algorithm is reviewed and its
parallelization is briefly explained. In section 3, the code is applied to KHI with random mode
perturbations in order to demonstrate the ability of the algorithm to evolve a linear perturbation
into nonlinear hydrodynamic turbulence. Single mode KHI problem is solved and growth rate
is discussed in section 4. In the last section, conclusions are made and paper is finalized.

2. Numerical method

2.1. The base algorithm
Present DNS study is based on the algorithm of Hou & Mahesh (2005). This is an implicit, non-
dissipative, predictor-corrector type, second-order, cartesian finite volume algorithm. It solves
fully compressible Navier-Stokes equations for an ideal gas. Incompressible pressure scaling is
used in order to handle low-Mach number flows properly. Unlike many other methods, face-
normal velocities (VN ) are calculated by projection. Variables are co-located in space and
staggered in time. Face values are found by simple averaging. These features make the algorithm
discretely energy conserving, robust, non-dissipative, and applicable to flows with a wide range
of Mach numbers.

Especially at low Mach numbers, we observed oscillating pressure-corrections (dp’s) in our
test runs which is caused to slow convergence on successive iterations in time. To remedy this,
a procedure suggested by Walton (1989) was adopted into our code.

2.2. Parallelization of the code
In order to study large problems with an implicit algorithm, parallelization is essential. DNS
code developed in this study uses the Portable, Extensible Toolkit for Scientific Computation
(PETSc). PETSc is a suite of data structures and routines that provide the building blocks for
the implementation of large-scale application codes on parallel computers (Balay et al, 1997).
PETSc uses distributed memory parallelism which is based on the message-passing interface
(MPI) for communication. It includes a suite of parallel linear solvers which can be chosen even
in run-time. Distributed Arrays (DAs) context is designed to handle problems on structured
grids. DAs decompose domain, as well as objects such as vectors and matrices and perform all
necessary communications among the available processors.

Since boundary condition support for DAs is limited in the stable release of PETSc, we
implement non-periodic boundary conditions into a parallel PETSc in the following way. First,
DAs are defined to have periodic boundary conditions in all directions. Then, ghost cells reserved
for the periodicity are used to store necessary values for non-periodic boundaries.

Linear systems arising from discretization are solved by using ILU(0)-preconditioned GMRES
algorithm. Parallel runs were performed on 256 cores.

3. KHI simulations with random mode perturbations

We consider here three-layer subsonic slip surface setup of three-dimensional KHI. This is the
same one used in tests of Athena code (Stone et al, 2008) in 2D, except density stratification.
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Domain sizes are −0.5 ≤ x ≤ 0.5, −0.5 ≤ y ≤ 0.5, and −0.5 ≤ z ≤ 0.5. Three-layer setup
allows us to use periodic boundary conditions for all directions. Initial streamwise velocity (u0)
is set to −0.5 for |y| > 0.25 and 0.5 for |y| ≤ 0.25. Velocities in other directions are set to
zero. Uniform initial pressure (p0 = 2.5) and density (ρ0 = 1) profiles are used. Ratio of specific
heats (γ) is taken as 1.4, giving a Mach number of 0.267. Prandtl number is 0.72 and Reynolds
number based on domain length, velocity difference, and dynamic viscosity of air is around
6.104. Dynamic viscosity is related to temperature via power-law, µ(T ) = T 0.67. 1283 grid is
chosen for simulation. Time step is set to 10−3 for all simulations. To trigger instability, random

Figure 1. Development of the y-component of total kinetic energy for random mode
perturbation

mode perturbations are added both to streamwise (u) and to normal velocity (v) components
within intermediate layer. Form of the perturbation is A0(rand(iseed) − 0.5) where A0 is the
amplitude which is set to 0.01 and iseed is the random number variable taken as 1. We followed
the development of the instability up to non-linear regime where tend ≈ 5.0.

Figure 1 shows evolution of the y-component of total kinetic energy (Ey), in comparison
to results obtained by the incompressible DNS (iDNS ) algorithm of Davidson & Peng (2003).
Growth of instability follows three steps within linear range; a settling period, an exponential
growth, and saturation phase. Qualitative picture given by the methods are as expected by
the linear theory and comparable to results calculated by Athena code (Stone et al, 2008) and
Fyris Alpha code (Sutherland, 2010). Although saturation levels are almost same, growth time
scales are very different. Differences in the growth times can be related to different dissipative
characteristics of the methods. Due to inherent dissipation included by scheme, settling period
may take more time on the same grid resolution, as it is observed in the results obtained by
Athena and Fyris Alpha. In figure 2, development of instability is shown in terms of iso-surfaces
of span-wise component of vorticity (ωz). Earlier growth of instability is predicted by current
non-dissipative DNS (cDNS ) algorithm. Through the end of the linear regime, flow gradually
approaches to transition to turbulence, which is predicted by both methods.

4. KHI simulations with single mode perturbations

The aim of this test is to compare numerical results obtained by cDNS algorithm with the growth
rate derived from the linear perturbation analysis. All cases were initialized with a hyperbolic
tangent velocity profile for streamwise velocity, u(y) = v0 tanh

(
−y
a

)
where a is initial shear layer

thickness and is set to 0.05. This value is small enough to avoid boundary effects. Upper and
lower boundaries are located at 10a. v0 is used to change Mach number and will be specified.
Other velocity components are set to zero. Upper and lower streams have opposite v0 velocities.
Initial pressure and density fields are uniform which are p0 = 1/γ, and ρ0 = 1 respectively.
These initial conditions are same with those used in ZEUS code of Clarke (1996). Convective
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Figure 2. Iso-surfaces of spanwise vorticity (ωz = 1) calculated by cDNS(top) and
iDNS(bottom) at t=1,2,3,4,5 from left to right.

Mach number (Mc) introduced in Bogdanoff (1983) and Papamoschou & Roshko (1998) is given
as, Mc = ∆v

cs1+cs2
where cs1 and cs2 are speeds of sound of each layer. Since speeds of sound

are same for given initial conditions, which is fixed to unity, Mc is equal to Mach number M
for all cases and is taken as reference Mach number Mr into our code. Prandtl number is 0.72
and specific ratio of heats is 1.4, as in the previous section. Domain is between −0.5 and 0.5
in all directions. Resolution is chosen as 2563. Flow is followed up to tend ≈ 10.0 with a fixed
time step, 10−3. Normal velocity component is perturbed with a single-mode perturbation in

Table 1. Simulation parameters and results

Case Ms Re kx v0 δw0 Γa/v0 2Emax/ρ0v
2
0

M1 0.250 1409 2π 0.250 0.1 0.092 244.66
M2 0.375 2114 2π 0.375 0.1 0.120 186.10
M3 0.500 2819 2π 0.500 0.1 0.138 109.07
M4 0.625 3523 2π 0.625 0.1 0.146 70.13
M5 0.750 4228 2π 0.750 0.1 0.097 43.55
M6 0.875 4933 2π 0.875 0.1 0.085 33.84
M7 1.000 5638 2π 1.000 0.1 0.073 21.54
W1 0.750 4228 π 0.750 0.1 0.098 43.49
W2(M5) 0.750 4228 2π 0.750 0.1 0.097 43.55
W3 0.750 4228 2.5π 0.750 0.1 0.095 43.36
W4 0.750 4228 3π 0.750 0.1 0.088 42.97
R1(M1) 0.250 1409 2π 0.250 0.1 0.092 244.66
R2 0.250 28090 2π 0.250 0.1 0.166 346.47
R3 0.250 100000 2π 0.250 0.1 0.171 347.08

the form, δvy = vy0 sin (kxx) exp(−y2/σ2). Amplitude is taken as vy0 = 0.01 which is smaller
than v0 for all cases. σ represents the decay of the amplitude in the outer region |y| > a, and
the ratio σ/a is set to 4. λ is taken as domain length. Boundary conditions in the y-direction
are adiabatic slip walls where face normal velocity VN is zero. Other boundaries are periodic.

Following Keppens et al (1999) and Miura and Pritchett (1982), growth rate, Γ, is determined
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by monitoring the y-component of total kinetic energy, Ey =
∫∫∫

(ρv2/2)dxdydz, which is
calculated by summing up values over whole domain. Saturation level Emax is the first maximum
of Ey(t) at time t. The corresponding time is also defined as tmax. Ey(t) then is fitted to
an exponential, exp(2Γt), within the time interval of [0.25tmax, 0.4tmax]. Γa/v0 is used for
comparison.

Mach number effects are studied by changing ∆v at fixed kx = 2π. For wave number cases,
M is set to 0.75. Reynolds number is based on average density, velocity difference, and half
initial vorticity thickness (δw0). Initial vorticity thickness is given as δw0 = ∆v

|du/dy|max
. M = 0.25

and kx = 2π are also chosen to demonstrate the effects of Reynolds numbers on growth rate.
In this case, different length scales are used to study with different Re’s. Table 1 summarizes
the important simulation parameters and results for all cases. Cases with M, W, and R denote
Mach number, wave number and Reynolds number study respectively. In figure 3.a, development

(a) (b)

(c) (d)

Figure 3. Change of y-component of total kinetic energy(a), growth rate(b), saturation level(c)
and momentum thickness(d) with Mach number

of Ey in time is plotted for different Mach numbers. Reynolds numbers are approximately
in the same order, therefore their effects on results should be equal and it can be ignored
for this comparison. We will also evaluate how really Reynolds number effects the results at
M = 0.25 later on. Instability develops hardly both at lower and higher values. Under quasi-
incompressible conditions where densities are equal and velocity difference is small, this is the
predicted behavior by linear theory. In figure 3.b, polynomial fitting is also performed over the
growth rates obtained by the procedure defined before. Resulting curve is similar to Keppens
et al (1999). Mach number where the highest growth rate observed is around 0.625. Although
this is slightly less than given by theory, it is the same result obtained with ZEUS code. A small
deviation is due to non-zero thickness of shear layer. Decrease in the momentum thickness,

δθ =
∫∞

0
ρ(y)u(y)
ρ0u0

(1− u(y)
u0

), with increasing Mach number is shown in figure 3.c. This evolution

matches to figure 2 of Pantano & Sarkar (2002). Saturation levels show a similar characteristic
with increasing Mach number, in consistent with figure 8 of Keppens et al (1999).

Comparison of Ey for different wave numbers is given in figure 4.a. Figure 4.b also compares
normalized growth rates. kxa where the highest growth rate occurs is around 0.2 at M = 0.75.
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For incompressible case, this value is given as ≈ 0.45. Keppens et al (1999) found ≈ 0.4 for
M = 0.5. As Miura & Pritchett (1982) explained, wave number of the fastest growing mode
is shifted to smaller values with increasing Mach number, in agreement with results in Blumen
(1970). Saturation levels in figure 4.c are decreasing with increasing wave number, similar to
figure 7 in Keppens et al (1999).

(a) (b) (c)

Figure 4. Change of y-component of total kinetic energy(a), growth rate(b), and saturation
level(c) with wave number

We also performed runs to show effects of Reynolds number on development of instability at
M = 0.25, which is the M1 case that instability develops hardly. As it is seen in figure 5, when
flow is getting closer to inviscid conditions, instability develops smoothly in compared to low
Reynolds number case, which is consistent with the inviscid nature of KHI. Growth rates and
saturation levels do not change noticeably at higher Reynolds numbers. These results are also
consistent with critical Reynolds number given by Dimotakis (2005) for a mixing layer instability
to evolve turbulence.

(a) (b) (c)

Figure 5. Change of y-component of total kinetic energy(a), growth rate(b), and saturation
level(c) with wave number

5. Conclusions

We developed a fully parallel DNS solver based on a non-dissipative, implicit algorithm which
conserves kinetic energy discretely. Solver was applied to KHI problem where linear perturbation
evolves into nonlinear hydrodynamic turbulence. We shoved that algorithm is able to capture
physics of such kind of transitional flows. Effect of various factors such as Mach number,
Reynolds number and wave number on the development of the instability were also discussed.
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Random case results showed that inherent dissipation included by scheme has stabilizing
effect on the instability. Single mode runs were performed in order to compare results to theory,
as well as previous numerical results. Mach number regime where instability is most unstable
found by the algorithm is subsonic/transonic regime, as predicted by the stability analysis.
Most unstable wave numbers are getting decrease to smaller values with an increasing Mach
number. Decreasing viscosity (high Re) allows perturbations to develop smoothly. Since KHI is
an inviscid problem, this is an expected result as also pointed out by some previous studies.

Detailed studies using the non-dissipative DNS solver with initial turbulent velocity fields to
understand the physical mechanisms of mixing transition to turbulence at high Mach numbers
for compressible turbulent shear layers can also be considered as a further research topic.
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