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Abstract The magnetic dipole moments of the doubly-
heavy baryons include significant data on their inner struc-
ture and geometric shape. Moreover, understanding the elec-
tromagnetic properties of doubly-heavy baryons is the key
to confinement and heavy flavor effects. Inspired by this,
we extract the magnetic dipole moments of the spin- 1

2
bottom-charm baryons utilizing the QCD light-cone sum
rule with considering the distribution amplitudes of the
photon. The magnetic dipole moments are obtained as
μ�+

bc
= −0.50+0.14

−0.12 μN , μ�0
bc

= 0.39+0.06
−0.05 μN and

μ�0
bc

= 0.38+0.05
−0.04 μN , μ�′+

bc
= 0.57+0.13

−0.12 μN , μ�′0
bc

=
−0.29+0.07

−0.06 μN and μ�′0
bc

= −0.26+0.06
−0.05 μN . Comparing the

results obtained on the magnetic dipole moments of the �
(′)0
bc

baryon with those of the �
(′)0
bc baryon, the U -symmetry is

minimally broken. We have compared our results with other
theoretical predictions that could be a useful complementary
tool for the interpretation of the doubly-heavy baryon sector,
and we observe that they are not in mutual agreement with
each other.

1 Motivation

Heavy quark baryons play an important role in hadron
physics and the investigation of their features may deepen
our comprehension of QCD. In the last few decades, mea-
surements of heavy baryons have accelerated with improve-
ments in experimental facilities. Numerous states have been
discovered, but many states need confirmation; hence the
heavy baryon sector is theoretically attractive. One of the
doubly-charmed baryons (�+

cc), which contains two c and
one d quark, was first announced by the SELEX Collabora-
tion with the mass M�+

cc
= 3519 ± 1 MeV [1], although, the
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result of SELEX could neither be confirmed nor excluded by
other experimental groups such as FOCUS [2], BABAR [3],
and Belle [4]. In 2017, a doubly-charmed baryon �++

cc with
the mass M�++

cc
= 3621.40 ± 0.72 ± 0.27 ± 0.14 MeV was

discovered by the LHCb Collaboration [5]. The observa-
tion of the �++

cc state opened the door to the experimental
detection of doubly-heavy baryons, and scientists expected
to discover more doubly-heavy baryons experimentally. The
LHCb collaboration has also carried out searches for the dou-
bly heavy baryons, �+

bc, �0
bc and �0

bc, yet these baryons are
yet to be observed [6–8]. Further measurements will be possi-
ble with larger data samples, and additional decay modes are
expected at the upgraded LHCb experiments. The study of
doubly-heavy baryons contributes to an in-depth comprehen-
sion of the chiral dynamics, heavy quark symmetry, funda-
mental theory of the strong interaction, and models inspired
by QCD. Therefore, numerous theoretical studies inspired
by these discoveries also have been carried out to define the
characteristic features like the masses, decay widths, strong
coupling constants, and lifetimes of doubly-heavy baryons
by investigating the strong and weak decays of these baryons
within different theoretical models and approaches. Reviews
of doubly-heavy baryon physics together with a more com-
plete list of references can be found in Refs. [9–12]. Elec-
tromagnetic properties of doubly-heavy baryons have been
studied in Refs. [13–37]. It is worth noting that the differ-
ent approaches used to derive the properties of double-heavy
baryons lead to quite different estimations, which can be used
to distinguish between approaches.

Investigating the electromagnetic features of hadrons
ensures us with helpful knowledge about their inner organiza-
tions. One can extract information about their shapes, sizes,
and decay widths and compare them with the experimental
results. Baryons including two heavy quarks are particularly
stimulating to study since examining the electromagnetic fea-
tures of two heavy quarks bound to a light quark helps us
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figure out the internal interaction dynamics of baryons con-
taining heavy quarks. Moreover, the results can help us under-
stand the key features of QCD such as confinement and flavor
effects. In the present study, the magnetic dipole moments of
spin- 1

2 bottom-charm baryons (B(′)
bc for short) are obtained

within the QCD light-cone sum rule (LCSR). This method
is powerful for studying the dynamic and static properties of
hadrons. In the LCSR method [38–40], a relevant two-point
correlation function within the external background electro-
magnetic field is evaluated in two different ways. Firstly,
the so-called hadronic representation is obtained in terms of
hadronic parameters such as form factors, magnetic dipole
moments, etc. In the second way, the so-called QCD repre-
sentation is evaluated in terms of quark-gluon degrees of
freedom. The correlation functions acquired in these two
different ways are then correlated using the assumption of
quark-hadron duality. As a final step, Borel transform and
continuum subtraction are applied to eliminate the contribu-
tions of possible higher states and continuum. In this way,
the LCSR for the desired physical quantities, in our case
magnetic dipole moments, are acquired.

This work is organized as follows. In Sect. 2, the calcu-
lation method used in this work is briefly introduced. We
present our results, compare them to other works, and give a
discussion in Sect. 3. Finally, a summary is given in Sect. 4.

2 The LCSR for magnetic dipole moments of the B(′)
bc

baryons

As we mentioned above, the starting point to evaluate any
physical quantity in the LCSR method is to write a convenient
correlation function. Here for the magnetic dipole moments,
the correlation function is written as

�(p, q) = i
∫

d4xeip·x 〈0|T {J (x) J̄ (0)}|0〉γ , (1)

where q is the momentum of the photon,γ is the external elec-
tromagnetic field and J (x) is the interpolating current having
quantum numbers J P = 1

2
+

. The interpolating current J (x)
is one of the key components necessary to extract the mag-
netic dipole moments of the bottom-charm baryons employ-
ing the LCSR method. There are different ways to construct
the corresponding interpolating currents using the diquark-
quark configurations of different spin parities. Taking into
account all the properties of the bottom-charm baryons, the
following interpolating currents are constructed in Ref. [41],
that we employ to evaluate the magnetic dipole moments of
these bottom-charm baryons:

J1(x) = εabc
[
bTa (x)Cγμcb(x)

]
γ5γ

μqc(x),

J2(x) = εabc
[
bTa (x)Cγ5cb(x)

]
qc(x), (2)

where q is u, d or s-quark, a, b, and c are color indices; and
C is the charge conjugation matrix. However, detailed inves-
tigations show that the J1 interpolating current is symmetric
under the b ↔ c exchange, while the J2 interpolating current
is antisymmetric under the b ↔ c exchange. Therefore, the
J1 interpolating current couples to the �bc and �bc baryons,
while the J2 interpolating current couples to the �′

bc and �′
bc

baryons.
To evaluate the physical representation of the correla-

tion function, we insert two complete sets of hadronic states
having the same quantum numbers as that of bottom-charm
baryons interpolating currents and we get:

�Had(p, q) = 〈0 | J (x) | B(′)
bc (p)〉

[p2 − m2
B(′)
bc

] 〈B(′)
bc (p) | B(′)

bc (p + q)〉γ

×〈B(′)
bc (p + q) | J̄ (0) | 0〉
[(p + q)2 − m2

B(′)
bc

] + · · · , (3)

where dots stand for the contribution of the continuum and
higher states. As can be seen from in Eq. (3), we need explicit
forms of matrix elements such as 〈0 | J

B(′)
bc

(0) | B(′)
bc (p, s)〉

and 〈B(′)
bc (p) | B(′)

bc (p + q)〉γ and they are written as follows

〈0 | J
B(′)
bc

(0) | B(′)
bc (p, s)〉 = λ

B(′)
bc

ν(p, s), (4)

〈B(′)
bc (p) | B(′)

bc (p + q)〉γ = εμν̄(p)

[(
F1(Q

2) + F2(Q
2)

)
γμ

+F2(Q
2)

(2p + q)μ

2m
B(′)
bc

]
ν(p), (5)

where ν(p) is the Dirac spinor, λ
B(′)
bc

is the residue of the cor-

responding baryon; and F1,2(Q2) are Lorentz invariant form
factors whose values at Q2 = 0 are needed in determination
of the magnetic dipole moments. Summation over spins of
B(′)
bc baryon is carried out as:

∑
s

ν(p, s)ν̄(u, s) = p/ + m
B(′)
bc

. (6)

Using Eqs. (3)–(6) the hadronic representation of the cor-
relation function takes the form

�Had(p, q) =
λ2
B(′)
bc

[(p + q)2 − m2
B(′)
bc

][p2 − m2
B(′)
bc

]

×
[(

F1(Q
2) + F2(Q

2)
)(

2 p/ε/p/ + p/ε/q/ + m
B(′)
bc

p/ε/

+ 2m
B(′)
bc

ε/p/ + m
B(′)
bc

ε/q/ + m2
B(′)
bc

ε/
)

+ other structures proportional with the F2(Q
2)

]
. (7)
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At the static limit, namely Q2 = 0, the magnetic dipole
moment is expressed with the help of the form factors
F1(Q2 = 0) and F2(Q2 = 0) as follows

μ
B(′)
bc

= F1(Q
2 = 0) + F2(Q

2 = 0). (8)

We observe that Eq. (7) includes different Lorentz struc-
tures. To identify the magnetic dipole moment of bottom-
charm baryons from Eq. (7) we choose the structure ε/q/.
The reason why we give priority to this structure is that it
includes more powers of momentum, which shows the best
convergence of the operator product expansion, and there-
fore causes a more reliable determination of the magnetic
dipole moment of bottom-charm baryons. As a result, the
hadronic representation of the correlation function, the mag-
netic dipole moment for spin-1/2 B(′)

bc baryons can be written
as:

�Had(p, q) = μ
B(′)
bc

λ2
B(′)
bc

m
B(′)
bc

[(p + q)2 − m2
B(′)
bc

][p2 − m2
B(′)
bc

] . (9)

The second representation of the correlation function,
the QCD side, is obtained by explicit use of the interpo-
lating currents to the correlation functions. Then the corre-
sponding quark fields are contracted via Wick’s theorem and
the desired results are obtained. After performing the above
manipulations, the QCD side of the correlation functions is
gained as:

�
QCD
1 (p, q) = i εabcεa

′b′c′
∫

d4 xeip·x 〈0 |
× Tr [γμS

bb′
c (x)γν S̃

aa′
b (x)](γ5γ

μScc
′

q (x)γ νγ5
) | 0〉γ ,

(10)

�
QCD
2 (p, q) = i εabcεa

′b′c′
∫

d4 xeip·x 〈0 |
× Tr [γ5S

bb′
c (x)γ5 S̃

aa′
b (x)]Scc′

q (x) | 0〉γ , (11)

where S̃i jQ(q)(x) = CSi j
T

Q(q)(x)C and, Si jq (x) and Si jQ (x) are

the light and heavy quark propagators, respectively. The light
and heavy quark propagators are written as [42,43],

Sq(x) = 1

2π2x2

(
i
x/

x2 − mq

2

)
− q̄q

12

(
1 − i

mq x/

4

)

− q̄σ.Gq

192
x2

(
1 − i

mq x/

6

)

− igs
32π2x2 Gμν(x)

[
/xσμν + σμν /x

]
, (12)

SQ(x) = m2
Q

4π2

[
K1(mQ

√−x2)√−x2
+ i

x/ K2(mQ
√−x2)

(
√−x2)2

]

− gsmQ

16π2

∫ 1

0
dv Gμν(vx)

[(
σμνx/ + x/σμν

)

× K1(mQ
√−x2)√−x2

+ 2σμνK0(mQ

√
−x2)

]
, (13)

where Gμν is the gluon field strength tensor, K0,1,2 are the
second kind of Bessel functions; and mq and mQ are the
masses of the light and heavy quarks, respectively.

The correlation functions contain two parts, that is, pho-
ton interacting with light and heavy quarks perturbatively
(short-distance contributions), and photon interacting with
light-quark nonperturbatively (long-distance contributions).
When the photon interacts with light and heavy quarks per-
turbatively, one of the propagators in Eq. (11) is substituted
by

S f ree(x) →
∫

d4y S f ree(x − y) /A(y) S f ree(y), (14)

where S f ree(x) is the first term of the light or heavy quark
propagators and the remaining two quark propagators are
taken as full quark propagators. When the manipulations
mentioned above are performed, the S f ree

q (x) and S f ree
Q (x)

take the following forms

S f ree
q (x) = eq

32π2x2

(
εαqβ − εβqα

)(
x/σαβ + σαβx/

)
,

S f ree
Q (x) = −i

eQmQ

32π2

(
εαqβ − εβqα

)[
2σαβK0

(
mQ

√
−x2

)

+
K1

(
mQ

√−x2
)

√−x2

(
x/σαβ + σαβx/

)]
. (15)

Equation (15) is inserted into Eqs. (10) and (11), and as a
result of these calculations for the perturbative contributions
we obtain

�
QCD
1−Pert (p, q) = i εabcεa

′b′c′
∫

d4 xeip·x

×
{
Tr [γμS

f ree
c (x)γν S̃

aa′
b (x)](γ5γ

μScc
′

q (x)γ νγ5
)
δbb

′

+ Tr [γμS
bb′
c (x)γν S̃

f ree
b (x)](γ5γ

μScc
′

q (x)γ νγ5
)
δaa

′

+ Tr [γμS
bb′
c (x)γν S̃

aa′
b (x)](γ5γ

μS f ree
q (x)γ νγ5

)
δcc

′}
,

(16)

�
QCD
2−Pert (p, q) = i εabcεa

′b′c′
∫

d4 xeip·x

×
{
Tr [γ5S

f ree
c (x)γ5 S̃

aa′
b (x)]Scc′

q (x)δbb
′

+ Tr [γ5S
bb′
c (x)γ5 S̃

f ree
b (x)]Scc′

q (x)δaa
′

+ Tr [γ5S
bb′
c (x)γ5 S̃

aa′
b (x)]S f ree

q (x)δcc
′}

. (17)

Note that all possibilities are considered in the above equa-
tions. In the first line of Eqs. (16) and (17), the photon inter-
acts perturbatively with the heavy quark propagator, while the
remaining two propagators are considered full. Likewise, in
the second line of Eqs. (16) and (17), the photon interacts

123



  887 Page 4 of 11 Eur. Phys. J. C           (2023) 83:887 

perturbatively with the heavy quark propagators, while the
other propagators are assumed to be full, etc.

In the case of the photon interacting with light quark non-
perturbatively in Eqs. (10) and (11) is substituted by

Sabαβ → −1

4
(q̄a�i q

b)(�i )αβ, (18)

where �i = I, γ5, γμ, iγ5γμ, σμν/2 and the remaining two
propagators are substituted with the full quark propagators.
In this case, the correlation functions take the form,

�
QCD
1−Nonpert (p, q) = − i

4
εabcεa

′b′c′
∫

d4 xeip·x 〈0 |
× Tr [γμS

bb′
c (x)γν S̃

aa′
b (x)](γ5γ

μ�iγ
νγ5

)
× (

q̄c(x)�i q
c′
(0)

) | 0〉γ , (19)

�
QCD
2−Nonpert (p, q) = − i

4
εabcεa

′b′c′
∫

d4 xeip·x 〈0 |
× Tr [γ5S

bb′
c (x)γ5 S̃

aa′
b (x)] �i

(
q̄c(x)�i q

c′
(0)

) | 0〉γ .

(20)

By replacing the light quark propagators and using the
expression q̄a(x)�i qa

′
(0) → 1

3δaa
′
q̄(x)�i q(0), Eqs. (19)

and (20) takes the form

�
QCD
1−Nonpert (p, q) = −i εabcεa

′b′c′

×
∫

d4 xeip·x T r [γμS
bb′
c (x)γν S̃

aa′
b (x)](γ5γ

μ�iγ
νγ5

)

× 1

12
〈γ (q)|q̄(x)�i q(0)|0〉, (21)

�
QCD
2−Nonpert (p, q) = −i εabcεa

′b′c′

×
∫

d4 xeip·x T r [γ5S
bb′
c (x)γ5 S̃

aa′
b (x)] �i

× 1

12
〈γ (q)|q̄(x)�i q(0)|0〉. (22)

Moreover, if a light quark interacts nonperturbatively
with a photon, a gluon can also be released from one
of the remaining two quark propagators. Matrix elements
such as 〈γ (q)|q̄(x)�i Gαβ(vx)q(0)|0〉 appear when the cal-
culations necessary to include these contributions are per-
formed. To evaluate the nonperturbative effects, we require
〈γ (q) |q̄(x)�i q(0)| 0〉 and 〈γ (q)

∣∣q̄(x)�i Gαβq(0)
∣∣ 0〉matrix

elements and those are determined in connection with the
photon distribution amplitude (DAs) with definite twists
in Ref. [44]. It is worth noting that the photon DAs used
in this study include contributions from only light quarks.
However, principally, the photon can be emitted at a long-
distance from the heavy quarks. Technically speaking, the
matrix elements of nonlocal operators are proportional to
the product of DAs, quark condensates, and some nonper-
turbative constants. Since we know that the contribution of

non-perturbative constants to our analysis is negligible, even
in the case of light quarks, we can neglect these contribu-
tions in the case of heavy quarks. The heavy quark con-
densates are proportional to 1/mQ . Due to the large mass
of the heavy quarks, such condensates for the heavy quarks
will be largely suppressed [45]. Therefore, DAs containing
heavy quarks (long-distance contributions) were not used in
our computations. Only the short-distance photon emission
from the heavy quarks is considered, as described in Eq. (14).
The QCD representation of the correlation function can be
evaluated in connection with QCD parameters by replacing
photon DAs and expressions for heavy and light quarks prop-
agators into Eq. (11).

The sum rules are acquired by equating the expression
of the correlation function in connection with QCD parame-
ters to its expression in connection with the hadron features,
employing their spectral representation. To suppress the sub-
traction terms in the spectral representation of the correlation
function, the double Borel transformation in connection with
the variables p2 and (p + q)2 is applied. After the transfor-
mation, contributions from the higher states and continuum
are also exponentially suppressed. Finally, we pick the ε/q/
structure for the magnetic dipole moments and obtain

μBbc = e
m2
Bbc
M2

λ2
bc
mBbc

�
QCD
1 (M2, s0), (23)

μB′
bc

= e

m2
B′
bc

M2

λ2
B′
bc
mB′

bc

�
QCD
2 (M2, s0). (24)

The analytical expressions of the functions �
QCD
1 (M2, s0)

and �
QCD
2 (M2, s0) are very similar forms, so, for the sake

of brevity, we present only the explicit expressions of the
function �

QCD
1 (M2, s0), which is given in Appendix A.

3 Numerical analysis and conclusion

In this section, numerical calculations for the spin- 1
2 bottom-

charm baryons have been presented. The numerical val-
ues of the parameters used in this section of the analysis
are as follows: mu = md = 0, ms = 93.4+8.6

−3.4 MeV,

mc = 1.27 ± 0.02 GeV, mb = 4.18+0.03
−0.02 GeV, [46],

〈q̄q〉 = (−0.24±0.01)3 GeV3 [47], m2
0 = 0.8±0.12 GeV2,

〈g2
s G

2〉 = 0.88 GeV 4 [48] and χ = −2.85±0.5 GeV2 [49].
The masses and residues of the bottom-charm baryons are
borrowed from Ref. [41]. Another set of main input parame-
ters are the photon wavefunctions of different twists, entering
the DAs. These wavefunctions are given in Appendix B.

As one can see from Eqs. (23) and (24), the magnetic
dipole moments of the bottom-charm baryons, in addition
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Fig. 1 The magnetic dipole moments of the bottom-charm baryons with variations of Borel parameter M2 at the different values of the continuum
threshold parameter s0: a, c and e for the �+

bc, �0
bc and �0

bc baryons, b, d and f for the �′+
bc , �′0

bc and �′0
bc baryons

to the above-mentioned input parameters, contain also two
helping parameters: the continuum threshold s0 and the Borel
mass parameter M2. To carry out numerical computations,
it is also necessary to choose the working intervals for the
parameters s0 and M2.

We apply the OPE convergence and pole dominance
conditions to determine the working intervals of s0 and
M2. From this perspective, we determine the value of
these helping parameters within the interval 56.0 GeV2 ≤
s0 ≤ 58.0 GeV2 and 7.0 GeV2 ≤ M2 ≤ 9.0 GeV2 for
�

(′)
bc baryons; and 57.0 GeV2 ≤ s0 ≤ 59.0 GeV2 and

123
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Table 1 Comparison of magnetic dipole moments of bottom-charm
baryons in the literature, including the nonrelativistic quark model
(NQM) [17,18], relativistic harmonic confinement model (RHM) [19],
effective quark mass (EQM) and shielded quark charge scheme

(SQCS) [20], MIT bag model [21,22], hypercentral constituent quark
model (HCQM) [23,24], heavy baryon chiral perturbation theory
(HBχPT) [26] and relativistic quark model (RQM)[27] (in nuclear mag-
neton μN )

Models μ�+
bc

μ�0
bc

μ�0
bc

μ�′+
bc

μ�′0
bc

μ�′0
bc

NQM [17] −0.198 0.058 0.009 – – –

NQM [18] −0.475 0.518 0.368 1.99 −0.993 −0.542

RHM [19] −0.52 0.63 0.49 – – –

EQM [20] −0.387 0.499 0.399 1.729 −0.864 −0.580

SCQS [20] −0.369 0.48 0.407 1.718 −0.817 −0.621

Bag model [21] −0.35 0.446 0.378 1.59 −0.796 −0.595

Bag model [22] −0.25 0.13 0.08 1.71 −0.53 −0.27

HCQM [23,24] −0.204 0.354 0.439 – – –

HBχPT [26] −0.54 0.56 0.49 0.69 −0.59 0.24

RQM [27] −0.12 0.42 0.45 1.52 −0.76 −0.61

This work −0.50+0.14
−0.12 0.39+0.06

−0.05 0.38+0.05
−0.04 0.57+0.13

−0.12 −0.29+0.07
−0.06 −0.26+0.06

−0.05

7.2 GeV2 ≤ M2 ≤ 9.2 GeV2 for �
(′)
bc baryon. By using all the

inputs as well as the working intervals of the helping param-
eters, we plot the variation of the magnetic dipole moments
concerning the helping parameters for the considered struc-
ture in Fig. 1. This figure indicates the mild dependence of
the magnetic dipole moments on the variations of the helping
parameters in their working intervals.

The obtained magnetic dipole moment results are given
in Table 1, and the same table also shows the predictions of
other theoretical models for the magnetic dipole moments
of bottom-charm baryons are also presented. The uncertain-
ties in the values of the input parameters and photon DAs,
as well as the variations in the calculations of the work-
ing windows s0 and M2, are responsible for the reported
errors in the results. As can be seen in Table 1, the mag-
netic dipole moments obtained for �bc and �bc baryons have
opposite signs to those obtained for �′

bc and �′
bc baryons.

The main reason for this is that the structure of these baryons
is symmetric and antisymmetric under the exchange of b-
and c-quarks. We have also been able to determine individual
quark contributions to the magnetic dipole moments. Since
the contribution of the heavy quarks to the magnetic dipole
moments is proportional to 1/mQ , the main contribution is
expected to come from the light-quark. In our calculations,
the light-quark comes through the two heavy quarks and gives
the dominant contribution. When analyzing the interpolating
current couple to the �′

bc and �′
bc baryons, it can be seen that

the heavy diquark has a scalar structure. Therefore, the con-
tribution of the heavy diquark to the magnetic dipole moment
is expected to be either very small or not at all. We find that
the magnetic dipole moments of these baryons are due almost
entirely to the light quarks. Our final comment on the mag-
netic dipole moment results is an examination of the viola-
tion of the U -symmetry. Though the U -symmetry breaking

effects have been considered via a nonzero s-quark mass and
s-quark condensate, we observe that the U - symmetry viola-
tion in the magnetic dipole moments is quite small for both
symmetric and antisymmetric interpolating currents.

Magnetic dipole moments of �
(′)
bc and �

(′)
bc baryons have

been previously investigated in the nonrelativistic quark
model (NQM) [17,18], relativistic harmonic confinement
model (RHM) [19], effective quark mass (EQM) and shielded
quark charge scheme (SQCS) [20], MIT bag model [21,22],
hypercentral constituent quark model (HCQM) [23,24],
heavy baryon chiral perturbation theory (HBχPT) [26] and
relativistic quark model (RQM)[27]. It is seen that the signs of
the magnetic dipole moments are correctly determined. How-
ever, different theoretical models have yielded quite different
results for the magnetic dipole moments of bottom-charm
baryons, which can be used to distinguish between models.
The choice of wave functions in different models may be
responsible for these discrepancies. However, the origin of
this obvious discrepancy remains an open issue. It is clear
that further theoretical and experimental studies are required
to clarify these inconsistencies and to better understand the
current situation. However, direct measurements of the mag-
netic dipole moments of bottom-charm baryons are not yet
possible. Therefore, any indirect projections of the magnetic
dipole moments of the bottom-charm baryons would be quite
helpful.

4 Summary

The observation of the �++
cc baryon by the LHCb Collab-

oration has aroused great interest in doubly-heavy baryon
systems. The measurement of the features of doubly-heavy
baryons ensures insight into both their inner structure and
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production mechanism. In this work, we have studied the
magnetic dipole moments of the bottom-charm baryons
within the framework of QCD light-cone sum rules. We have
compared our results with other theoretical predictions that
could be a useful complementary tool for the interpretation
of the doubly-heavy baryon sector, and we observe that they
are not in mutual agreement with each other. Different the-
oretical models give quite different predictions for the mag-
netic dipole moments of the bottom-charm baryons, as can be
seen from the results in Table 1. Comparison of the acquired
results on the magnetic dipole moments of the �

(′)0
bc baryon

with those of �
(′)0
bc baryon presents a small U -symmetry

violation. The magnetic dipole moment is the leading-order
response of a bound system to a weak external magnetic field
and thus provides an excellent platform to probe the internal
organization of hadrons, which is governed by the quark-
gluon dynamics of QCD. Moreover, understanding the elec-
tromagnetic properties of doubly-heavy baryons is the key
to confinement and heavy flavor effects. Future experimental
efforts on the properties of doubly-heavy baryons may figure
out inconsistencies among different model estimations. We
believe that our results will be helpful in future experimental
and theoretical attempts regarding doubly-heavy baryons.
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Appendix A: The explicit form of the �
QCD
1 (M2, s0)

function

In this appendix, we present the explicit expression for the
�

QCD
1 (M2, s0) function:

�
QCD
1 (M2, s0) = eq P1P2

1327104π[
− 6

(
I [0, 2, 2, 0] − 2I [0, 2, 3, 0]

+ I [0, 2, 4, 0] + 2I [1, 1, 2, 0] − 4I [1, 1, 3, 0]
+ 2I [1, 1, 4, 0]

)
× I2[hγ ]

+ 3
(

5I [0, 2, 2, 0] − 10I [0, 2, 3, 0]
+ 5I [0, 2, 4, 0] + 8I [1, 1, 2, 0] − 16I [1, 1, 3, 0]
+ 8I [1, 1, 4, 0]

)
A[u0]+2χ

(
4I [0, 3, 2, 0]−8I [0, 3, 3, 0]

+ 4I [0, 3, 4, 0] + 3I [1, 2, 2, 0] − 6I [1, 2, 3, 0]
+ 3I [1, 2, 4, 0]

)
× ϕγ [u0]

]

− P2

983040π

[
5eq

(
16m2

c

(
I [0, 3, 1, 0]

− I [0, 3, 2, 0])I1[S] + 3
(
3I [0, 4, 2, 0]

− 6I [0, 4, 3, 0] + 3I [0, 4, 4, 0]
+ 4I [1, 3, 2, 0] − 8I [1, 3, 3, 0] + 4I [1, 3, 4, 0])I1[S]
+ 9

( − I [0, 4, 3, 0] + 3I [0, 4, 4, 0] − 3I [0, 4, 5, 0]
+ I [0, 4, 6, 0] − 4I [1, 3, 3, 0] + 12I [1, 3, 4, 0]
− 12I [1, 3, 5, 0]
+ 4I [1, 3, 6, 0])I2[hγ ] + 9

(
5I [0, 4, 3, 0]

− 15I [0, 4, 4, 0] + 15I [0, 4, 5, 0] − 5I [0, 4, 6, 0]
+ 16I [1, 3, 3, 0] − 48I [1, 3, 4, 0] + 48I [1, 3, 5, 0]
− 16I [1, 3, 6, 0] + 6I [2, 2, 3, 0] − 18I [2, 2, 4, 0]
+ 18I [2, 2, 5, 0] − 6I [2, 2, 6, 0])A[u0]
+ 9χ

(
4I [0, 5, 3, 0] − 12I [0, 5, 4, 0] + 12I [0, 5, 5, 0]

− 4I [0, 5, 6, 0] + 5I [1, 4, 3, 0]
− 15I [1, 4, 4, 0] + 15I [1, 4, 5, 0]
− 5I [1, 4, 6, 0])ϕγ [u0]

)

+ eb
(

32mbmc
(
I [0, 3, 1, 0] − 2I [0, 3, 2, 0]

+ I [0, 3, 3, 0]) + 18I [0, 4, 2, 0]
− 54I [0, 4, 3, 0] + 54I [0, 4, 4, 0]
− 18[0, 4, 5, 0] + 3m2

0

(
16mbmc

(
I [0, 2, 1, 0]

− 2I [0, 2, 2, 0] + I [0, 2, 3, 0]
+ I [1, 1, 1, 0] − 2I [1, 1, 2, 0]
+ I [1, 1, 3, 0]) + 12I [0, 3, 2, 0]
− 36I [0, 3, 3, 0] + 36I [0, 3, 4, 0] − 12I [0, 3, 5, 0]
+ 45I [1, 2, 2, 0] − 135I [1, 2, 3, 0] + 135I [1, 2, 4, 0]
− 45I [1, 2, 5, 0] + 6I [2, 1, 2, 0] − 18I [2, 1, 3, 0]
+ 18I [2, 1, 4, 0] − 6I [2, 1, 5, 0]

))

+ 5ec
(

32mbmc
(
I [0, 3, 2, 0]

− I [0, 3, 3, 0]) + 18I [0, 4, 3, 0]
− 36I [0, 4, 4, 0] + 18I [0, 4, 5, 0]
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+ 3m2
0

(
16mbmc

(
I [0, 2, 2, 0]

− I [0, 2, 3, 0] + I [1, 1, 2, 0] − I [1, 1, 3, 0])
+ 12I [0, 3, 3, 0] − 24I [0, 3, 4, 0] + 12I [0, 3, 5, 0]
+ 45I [1, 2, 3, 0] − 90I [1, 2, 4, 0] + 45I [1, 2, 5, 0]
+ 6I [2, 1, 3, 0] − 12I [2, 1, 4, 0] + 6I [2, 1, 5, 0]

))]

+ mqmcmb

1024π3

[
ec

(
I [0, 4, 2, 0]

− I [0, 4, 2, 1] − I [0, 4, 3, 0]) + eb
(
I [0, 4, 1, 0]

− 2I [0, 4, 1, 1] + I [0, 4, 1, 2]
− 2I [0, 4, 2, 0] + 2I [0, 4, 2, 1] + I [0, 4, 3, 0])]

+ 3mqm2
0

327680π3

[
eb

(
20I [0, 4, 2, 0]

− 60I [0, 4, 2, 1] + 60I [0, 4, 2, 2] − 20I [0, 4, 2, 3]
− 60I [0, 4, 3, 0] + 120I [0, 4, 3, 1] − 60I [0, 4, 3, 2]
+ 60I [0, 4, 4, 0] − 60I [0, 4, 4, 1]
− 20I [0, 4, 5, 0] − I [0, 5, 2, 0]
+ 3I [0, 5, 3, 0] − 3I [0, 5, 4, 0] + I [0, 5, 5, 0]
− 80

(
I [1, 3, 2, 0] − 3I [1, 3, 2, 1]

+ 3I [1, 3, 2, 2] − I [1, 3, 2, 3]
− 3(I [1, 3, 3, 0] − 2I [1, 3, 3, 1] + I [1, 3, 3, 2]
− I [1, 3, 4, 0] + I [1, 3, 4, 1]) − I [1, 3, 5, 0]))

+ ec
(

20I [0, 4, 3, 0] − 40I [0, 4, 3, 1] + 20I [0, 4, 3, 2]
− 40I [0, 4, 4, 0] + 40I [0, 4, 4, 1] + 20I [0, 4, 5, 0]
− I [0, 5, 3, 0] + 2I [0, 5, 4, 0] − I [0, 5, 5, 0]
− 80

(
I [1, 3, 3, 0] − 2I [1, 3, 3, 1]

+ I [1, 3, 3, 2] − 2I [1, 3, 4, 0]
+ 2I [1, 3, 4, 1] + I [1, 3, 5, 0]))], (A.1)

where

M2 = M2
1 M

2
2

M2
1 + M2

2

, u0 = M2
1

M2
1 + M2

2

,

with M2
1 and M2

2 being the Borel parameters in the initial
and final states, respectively. We set M2

1 = M2
2 = 2M2 as

the initial and final states are the same. We will fix M2 and
continuum threshold s0 based on the standard prescription of
the LCSR method in the next section. Here P1 = 〈g2

s G
2〉 is

gluon condensate, χ stands for the magnetic susceptibility
of the quark condensate, and P2 = 〈q̄q〉, eq and mq are the
quark condensate, electric charge and mass of the u, d or
s-quark, respectively.

Explicit forms of I [n,m, l, k] and Ii [F] functions are as
follows:

I [n,m, l, k] =
∫ s0

4m2
c

ds
∫ 1

0
dt

∫ 1

0
dw e−s/M2

× sn (s − 4m2
c)

m tl wk,

I1[F] =
∫

Dαi

∫ 1

0
dv F(αq̄ , αq , αg)

× δ(αq + v̄αg − u0),

I2[F] =
∫ 1

0
du F(u), (A.2)

where F denotes the corresponding photon DAs.

Appendix B: Distribution amplitudes of the photon

In this appendix, the matrix elements 〈γ (q) |q̄(x)�i q(0)| 0〉
and 〈γ (q)

∣∣q̄(x)�i Gμνq(0)
∣∣ 0〉 associated with the photon

DAs are presented as follows [44]:

〈γ (q)|q̄(x)γμq(0)|0〉
= eq f3γ

(
εμ − qμ

εx

qx

)∫ 1

0
dueiūqxψv(u)

〈γ (q)|q̄(x)γμγ5q(0)|0〉 = −1

4
eq f3γ εμναβενqαxβ

×
∫ 1

0
dueiūqxψa(u)

〈γ (q)|q̄(x)σμνq(0)|0〉 = −ieq〈q̄q〉(εμqν − ενqμ)

×
∫ 1

0
dueiūqx

(
χϕγ (u) + x2

16
A(u)

)
− i

2(qx)
eq q̄q

×
[
xν

(
εμ − qμ

εx

qx

)
− xμ

(
εν − qν

εx

qx

)]

×
∫ 1

0
dueiūqxhγ (u)

〈γ (q)|q̄(x)gsGμν(vx)q(0)|0〉
= −ieq〈q̄q〉 (

εμqν − ενqμ

) ∫
Dαi e

i(αq̄+vαg)qxS(αi )

〈γ (q)|q̄(x)gs G̃μν(vx)iγ5q(0)|0〉
= −ieq〈q̄q〉 (

εμqν − ενqμ

) ∫
Dαi e

i(αq̄+vαg)qx S̃(αi )

〈γ (q)|q̄(x)gs G̃μν(vx)γαγ5q(0)|0〉
= eq f3γ qα(εμqν − ενqμ)

∫
Dαi e

i(αq̄+vαg)qxA(αi )

〈γ (q)|q̄(x)gsGμν(vx)iγαq(0)|0〉
= eq f3γ qα(εμqν − ενqμ)

∫
Dαi e

i(αq̄+vαg)qxV(αi )

〈γ (q)|q̄(x)σαβgsGμν(vx)q(0)|0〉

123
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= eq〈q̄q〉
{[(

εμ − qμ

εx

qx

)

×
(
gαν − 1

qx
(qαxν + qνxα)

)
qβ

−
(

εμ − qμ

εx

qx

) (
gβν − 1

qx
(qβxν + qνxβ)

)
qα

−
(

εν − qν

εx

qx

)(
gαμ − 1

qx
(qαxμ + qμxα)

)
qβ

+
(

εν − qν

εx

q.x

) (
gβμ − 1

qx
(qβxμ + qμxβ)

)
qα

]

×
∫

Dαi e
i(αq̄+vαg)qxT1(αi )

+
[(

εα − qα

εx

qx

) (
gμβ − 1

qx
(qμxβ + qβxμ)

)
qν

−
(

εα − qα

εx

qx

)(
gνβ − 1

qx
(qνxβ + qβxν)

)
qμ

−
(

εβ − qβ

εx

qx

) (
gμα − 1

qx
(qμxα + qαxμ)

)
qν

+
(

εβ − qβ

εx

qx

) (
gνα − 1

qx
(qνxα + qαxν)

)
qμ

]

×
∫

Dαi e
i(αq̄+vαg)qxT2(αi )

+ 1

qx
(qμxν − qνxμ)(εαqβ − εβqα)

×
∫

Dαi e
i(αq̄+vαg)qxT3(αi )

+ 1

qx
(qαxβ − qβxα)(εμqν − ενqμ)

×
∫

Dαi e
i(αq̄+vαg)qxT4(αi )

}
,

where ϕγ (u) is the DA of leading twist-2, ψv(u), ψa(u),
A(αi ) and V(αi ), are the twist-3 amplitudes, and hγ (u),
A(u), S(αi ), S̃(αi ), T1(αi ), T2(αi ), T3(αi ) and T4(αi ) are
the twist-4 photon DAs. The measure Dαi is defined as

∫
Dαi =

∫ 1

0
dαq̄

∫ 1

0
dαq

∫ 1

0
dαgδ(1 − αq̄ − αq − αg).

The expressions of the DAs that are entered into the matrix
elements above are as follows:

ϕγ (u) = 6uū

(
1 + ϕ2(μ)C

3
2
2 (u − ū)

)
,

ψv(u) = 3
(

3(2u − 1)2 − 1
)

+ 3

64

(
15wV

γ − 5wA
γ

)

×
(

3 − 30(2u − 1)2 + 35(2u − 1)4
)

,

ψa(u) =
(

1 − (2u − 1)2
) (

5(2u − 1)2 − 1
)

×5

2

(
1 + 9

16
wV

γ − 3

16
wA

γ

)
,

hγ (u) = −10
(
1 + 2κ+)

C
1
2
2 (u − ū),

A(u) = 40u2ū2 (
3κ − κ+ + 1

)
+8(ζ+

2 − 3ζ2)
[
uū(2 + 13uū)

+2u3(10 − 15u + 6u2) ln(u)

+2ū3(10 − 15ū + 6ū2) ln(ū)
]
,

A(αi ) = 360αqαq̄α
2
g

(
1 + wA

γ

1

2
(7αg − 3)

)
,

V(αi ) = 540wV
γ (αq − αq̄)αqαq̄α

2
g,

T1(αi ) = −120(3ζ2 + ζ+
2 )(αq̄ − αq)αq̄αqαg,

T2(αi ) = 30α2
g(αq̄ − αq)

(
(κ − κ+)

+(ζ1 − ζ+
1 )(1 − 2αg) +ζ2(3 − 4αg)

)
,

T3(αi ) = −120(3ζ2 − ζ+
2 )(αq̄ − αq)αq̄αqαg,

T4(αi ) = 30α2
g(αq̄ − αq)

(
(κ + κ+)

+(ζ1 + ζ+
1 )(1 − 2αg) +ζ2(3 − 4αg)

)
,

S(αi ) = 30α2
g{(κ + κ+)(1 − αg)

+(ζ1 + ζ+
1 )(1 − αg)(1 − 2αg)

+ζ2[3(αq̄ − αq)
2 − αg(1 − αg)]},

S̃(αi ) = −30α2
g{(κ − κ+)(1 − αg)

+(ζ1 − ζ+
1 )(1 − αg)(1 − 2αg)

+ζ2[3(αq̄ − αq)
2 − αg(1 − αg)]}.

The numerical values of the parameters used in the DAs
are ϕ2(1 GeV) = 0, wV

γ = 3.8 ± 1.8, wA
γ = −2.1 ± 1.0,

κ = 0.2, κ+ = 0, ζ1 = 0.4, and ζ2 = 0.3.
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