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DETECTION OF RETINOPATHY DISEASES USING 

CONVOLUTIONAL NEURAL NETWORK BASED ON 

DISCRETE COSINE TRANSFORM 

ABSTRACT  

The aim of this study was to examine the relationship between self-esteem and  

basic psychological needs satisfaction  in the adolescents from diffrent kind of high 

shcool. The universe of the research consists of students who have completed 

secondary education in Istanbul in 2016-2017 academic year. The sample of the 

research consists of 299 students selected from 4 secondary schools in Istanbul with 

random sampling. 64.9% (194) of the students are girls and 35.1% (105) are boys. 

8.4% (25) of the students are 15 years old, 46.2% (138) are 16 years old, 43.5% (130) 

are 17 years old, and 2% (6) are 18 years old. According to school distributions; The 

rate of students with Multi-Program Anatolian High School is 25.1% (75), the rate of 

Social Science High School students is 25.4% (76), the rate of Science High School 

students is 24.1% (72) and the rate of Anatolian High School students is 25.4% (76) 

'kind. 

The data of the study were collected with the Rosenberg Self-Esteem Scale 

short form and Basic Psychological needs scale. The data obtained were analyzed in 

SPSS. Descriptive statistics: frequency tables consist of avarage, standart deviation 

information.  

As a result of the study, it was found that autonomy, competence and being 

related sub-dimensions of basic psychological needs explained 46.7% of the variance 

of self-esteem. The findings are discussed in the light of previous research. 

Keywords: Competence, Autonomy, Relatedness and Self-Respect 
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AYRIK KOSİNÜS DÖNÜŞÜMÜNE DAYALI KONVOLÜSYONEL 

SİNİR AĞI KULLANILARAK RETİNOPATİ 

HASTALIKLARININ TESPİTİ 

ÖZET 

Bu yüksek lisans tezi, ayrık kosinüs dönüşümüne (DCT) dayalı bir evrişimli 

sinir ağı (CNN) kullanarak retinopati hastalıklarını saptamak için yeni bir yaklaşım 

önermektedir. 

Retinopati, erken teşhis ve tedavi edilmezse görme kaybına neden olabilen 

yaygın bir göz hastalığıdır. Önerilen yöntem, algılama doğruluğunu artırmak için CNN 

ve DCT'nin gücünü birleştirir. Giriş görüntüsü, gürültü miktarını azaltan ve 

görüntünün önemli özelliklerini vurgulayan DCT kullanılarak frekans alanına 

dönüştürülür. Ardından, dönüştürülen görüntü sınıflandırma için CNN'ye beslenir. 

Önerilen yöntemin performansı, halka açık bir retinal görüntü veri kümesi kullanılarak 

değerlendirilir. 

Sonuçlar, önerilen yöntemin doğruluk ve hesaplama verimliliği açısından 

mevcut yöntemlerden daha iyi performans gösterdiğini göstermektedir. Önerilen 

yöntem, retinopati hastalıklarının erken tanı ve tedavisi için gerçek dünyadaki 

uygulamalarda kullanılma potansiyeline sahiptir. 

Anahtar Kelimeler: retinopati hastalıkları, konvolüsyonel sinir ağı, ayrık 

kosinüs dönüşümü, erken tanı, tedavi 
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I. INTRODUCTION 

A. Introduction 

Retinopathy refers to a group of eye diseases that primarily affect the retina, a 

light-sensitive tissue situated Toward the rear of the eye, in charge of converting light 

into neural signals. The retina plays an essential role in proper vision functioning. 

Retinopathy diseases, including diabetic retinopathy, retinopathy of prematurity, and 

hypertensive retinopathy, can cause progressive damage if not recognized and treated 

immediately, it can cause vision loss or possibly blindness. Early detection and 

intervention are critical in mitigating the impact of retinopathy and preserving vision 

for patients. 

The traditional diagnostic methods for retinopathy involve various techniques 

such as fundus examination, optical coherence tomography (OCT), and fluorescein 

angiography. Fundus examination involves using an ophthalmoscope to evaluate the 

retina's health, while OCT is a non-invasive imaging technique that captures high-

resolution cross-sectional images of the retina. Fluorescein angiography involves 

injecting a dye into the bloodstream and using a specialized camera to photograph the 

blood vessels in the retina. These methods necessitate specialized equipment, skilled 

medical professionals, and can be time-consuming and expensive. Furthermore, the 

interpretation of the test results may be subjective, potentially leading to 

inconsistencies in diagnosis and delayed treatment. 

The global prevalence of diabetes has been rising at an alarming rate, 

increasing the number of diabetic retinopathy cases. This rise emphasizes the need for 

more efficient, accurate, and accessible diagnostic tools to meet the growing demand 

for retinopathy screening and diagnosis. Deep learning and artificial intelligence (AI) 

developments have showed promise in overcoming these difficulties, especially in the 

realm of medical imaging. 

Convolutional Neural Networks (CNNs) have emerged as a powerful tool in 

the field of medical imaging, particularly for the detection and classification of various 

diseases. CNNs are a type of deep learning model that mimics the human visual 



2 

 

system, enabling the efficient processing of images for pattern recognition and feature 

extraction. Researchers have been employing CNNs for retinopathy detection, 

achieving significant progress. Some examples of CNN architectures used in 

retinopathy detection include AlexNet, VGG-16, and Inception. These models have 

demonstrated high accuracy and efficiency in detecting retinopathy lesions, such as 

microaneurysms, hemorrhages, and exudates. 

However, there is still room for improvement in terms of accuracy, efficiency, 

and robustness of the models. One challenge faced by CNNs is the large amount of 

data required for training. Insufficient data may lead to overfitting, resulting in a model 

that performs poorly on new, unseen data. Data augmentation techniques, such as 

rotation, flipping, and scaling, are often employed to increase the dataset's size, but 

these methods may not always be sufficient to prevent overfitting. Furthermore, the 

high computational cost of training and deploying CNNs might be a barrier, 

particularly in low-resource situations. 

Discrete Cosine Transform (DCT) is an established technique in image 

processing, widely used for image compression, enhancement, and feature extraction. 

DCT is a linear transformation that converts an image from the spatial domain to the 

frequency domain, representing the image's information using a series of cosine 

functions with varying frequencies. By analyzing the image in the frequency domain, 

DCT can help identify and extract relevant features while reducing the dimensionality 

of the data. Incorporating DCT into the CNN model for retinopathy detection may 

provide better feature representation, enhancing the model's performance and leading 

to more accurate and reliable diagnosis. 

This literature review will delve into the various aspects of retinopathy 

diseases, their types, symptoms, risk factors, and the challenges associated with 

diagnosis. It will also explore the advancements in CNNs and their application in 

medical imaging, along with the role of DCT in image processing and feature 

extraction. 

The next step in the study will involve the collection and preprocessing of 

fundus images for model development. The dataset will include fundus images from 

publicly available sources, such as Aptos 2019 blindness detection, which contain 

images with varying stages and types of retinopathy. The preprocessing step will 

involve techniques such as contrast enhancement, noise reduction, and vessel 

segmentation to ensure high-quality input for the model. Additionally, data 
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augmentation techniques, such as rotation, flipping, and scaling, will be employed to 

increase the dataset size and promote model generalization. 

 

Figure 1: Sample images of the five DR classes collected from the APTOS 2019 

dataset 

The study will then focus on developing a CNN-based model for retinopathy 

detection that incorporates DCT for feature extraction. The development process will 

include the following steps: 

Implementing DCT-based feature extraction to obtain more robust and discriminative 

features from the fundus images. This step will involve applying DCT to the 

preprocessed images, retaining a select number of DCT coefficients that capture the 

most relevant information, and reconstructing the images in the spatial domain. The 

resulting images will serve as input for the CNN model. 

Designing, implementing, and optimizing the CNN model using the extracted 

features. The model architecture will be designed based on existing successful CNN 

architectures, such as Xception, and Resnet152v2, with modifications tailored to 

retinopathy detection. The model will be trained using a portion of the dataset, with 

the remaining data reserved for validation and testing. 

To get optimal performance, fine-tune model Learning rate, also batch size, and 

number of convolutional layers are examples of hyperparameters. This step will 
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involve using techniques such as grid search and cross-validation to systematically 

explore the hyperparameter space and identify the best combination of parameters. 

This research is dedicated to evaluating the efficacy of the suggested model. 

Upon its completion and optimization, the model will be thoroughly examined in terms 

of various metrics. These include accuracy, sensitivity, specificity, F1-score, and the 

area beneath the receiver operating characteristic curve, utilizing a meticulously 

curated test dataset. By delving into these metrics, we aim to provide a comprehensive 

understanding of the model's capabilities. Furthermore, this in-depth evaluation will 

not only highlight the potential advantages for its implementation in clinical settings 

but will also offer insights into its effectiveness and precision when tasked with the 

identification of retinal diseases. This holistic approach ensures that the model's 

robustness and reliability are well-understood before any practical applications. 

Moreover, the study will compare the performance of the proposed model with 

existing methods, including other CNN-based models and traditional diagnostic 

techniques, such as fundus examination. This comparison will help identify potential 

improvements and areas for future research. 

Finally, the study will discuss the implications of the findings for medical 

professionals, patients, and the broader healthcare system. By developing a more 

accurate, efficient, and robust model for retinopathy detection, the study aims to 

contribute to the early diagnosis and treatment of retinopathy, ultimately helping to 

preserve vision for those affected by these diseases. The study will also explore the 

potential applications of the proposed model beyond retinopathy detection, such as the 

diagnosis of other eye diseases or medical imaging tasks. 

In conclusion, This research seeks to establish a new model rooted in CNN 

techniques for identifying retinopathy that incorporates DCT for feature extraction, 

offering a more accurate and efficient diagnostic tool for retinopathy diseases. The 

outcomes of this research might have a substantial influence on the early detection and 

treatment of retinopathy. ultimately helping to preserve vision for those affected by 

these diseases. Moreover, the study will provide valuable insights into the application 

of CNNs and DCT in medical imaging, paving the way for further research and 

innovation in this area. 
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B. Background And Motivation 

Retinopathy encompasses a group of eye diseases that primarily affect the 

retina, the light-sensitive tissue responsible for converting light into neural signals at 

the back of the eye. The retina is crucial for proper vision functioning, and damage to 

The retina can cause visual loss. or even blindness. Retinopathy diseases, including 

diabetic retinopathy, retinopathy of prematurity, and hypertensive retinopathy, are 

characterized by progressive damage to the retinal blood vessels, which can cause a 

variety of symptoms, such as blurred vision, floaters, and dark spots in the visual field. 

 

 

Figure 2: Sample images of the five DR classes collected from the APTOS 2019 

dataset 

Diabetic retinopathy, in particular, is a growing concern due to the global 

increase in diabetes cases. It is a major cause of vision loss among working-age adults 

and poses a significant burden on healthcare systems worldwide. Early detection and 

intervention are critical in mitigating the impact of retinopathy and preserving vision 

for patients. However, the traditional diagnostic methods, such as fundus examination, 

optical coherence tomography (OCT), and fluorescein angiography, have several 

limitations, including high costs, the need for specialized equipment and skilled 

medical professionals, and subjective interpretation of test results. These factors can 

lead to inconsistencies in diagnosis and delayed treatment. 

The advances in artificial intelligence (AI) and deep learning techniques have 

shown promise in addressing the challenges associated with retinopathy diagnosis. 
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Convolutional Neural Networks (CNNs), a type of deep learning model that mimics 

the human visual system, have emerged as a powerful tool in medical imaging for the 

detection and classification of various diseases. Researchers have been employing 

CNNs for retinopathy detection, achieving significant progress. However, there are 

still areas for improvement in terms of accuracy, efficiency, and robustness of the 

models. The limitations of CNNs include the large amount of data required for 

training, the high computational cost, and the susceptibility to overfitting. 

Discrete Cosine Transform (DCT), an established technique in image 

processing, has been widely used for image compression, enhancement, and feature 

extraction. DCT is a linear transformation that converts an image from the spatial 

domain to the frequency domain, representing the image's information using a series 

of cosine functions with varying frequencies. By analyzing the image in the frequency 

domain, DCT can help identify and extract relevant features while reducing the 

dimensionality of the data. Incorporating DCT into the CNN model for retinopathy 

detection may provide better feature representation, enhancing the model's 

performance and leading to more accurate and reliable diagnosis. 

The motivation behind this study is to address the challenges associated with 

retinopathy detection and improve the early diagnosis and treatment of these diseases. 

By developing a novel CNN-based model that incorporates DCT for feature extraction, 

the study aims to provide a more accurate, efficient, and robust diagnostic tool for 

retinopathy diseases. The suggested approach has the potential to assist medical 

professionals in early detection and intervention, eventually assisting in the 

preservation of eyesight for patients suffering from retinopathy. Furthermore, the 

study will contribute to the growing body of research on the application of AI and deep 

learning techniques in medical imaging, paving the way for further innovation in this 

area. 

The increasing prevalence of retinopathy diseases, particularly diabetic 

retinopathy, underscores the urgent need for more effective and accessible diagnostic 

tools. The limitations of traditional diagnostic methods, such as fundus examination, 

optical coherence tomography (OCT), and fluorescein angiography, highlight the 

potential benefits of leveraging advanced AI and deep learning techniques in 

retinopathy detection. 

Convolutional neural networks (CNNs) have already shown amazing outcomes 

in a number of fields when used in medical imaging., including cancer detection, lesion 
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segmentation, and organ identification. CNNs offer the ability to process complex 

images, identify patterns, and extract features, making them a promising tool for 

retinopathy detection. However, despite the achievements, there remain challenges 

and areas for improvement in the implementation of CNNs for retinopathy detection, 

such as the need for large training datasets, high computational costs, and model 

overfitting. 

Incorporating Discrete Cosine Transform (DCT) into the CNN model for 

retinopathy detection has the potential to address some of these challenges. DCT can 

improve feature representation by converting pictures from the spatial to the frequency 

domains, enabling the extraction of more discriminative features and the reduction of 

data dimensionality. By combining the strengths of CNNs and DCT, the proposed 

model aims to achieve higher accuracy, efficiency, and robustness in retinopathy 

detection. 

Moreover, the integration of DCT with CNNs has broader implications for the 

field of medical imaging. By demonstrating the effectiveness of DCT-based feature 

extraction in improving CNN performance, this study could inspire further research 

and innovation in other medical imaging applications. For instance, the proposed 

approach could be extended to the detection of other eye diseases, such as age-related 

macular degeneration and glaucoma, or applied to different imaging modalities, such 

as magnetic resonance imaging (MRI) and computed tomography (CT). 

Another motivation for this study is the potential for enhancing the accessibility 

of retinopathy diagnosis. Developing a more accurate, efficient, and robust CNN-

based model for retinopathy detection could help overcome some of the barriers 

associated with traditional diagnostic methods, such as the need for specialized 

equipment and skilled medical professionals. By simplifying the diagnostic process 

and reducing the associated costs, the proposed model could facilitate the widespread 

adoption of retinopathy screening and improve the availability of early diagnosis and 

treatment for those affected by these diseases. 

Finally, the study aims to contribute to the growing body of research on the 

application of AI and deep learning techniques in healthcare. By developing and 

evaluating a novel CNN-based model for retinopathy detection that incorporates DCT 

for feature extraction, this study will add valuable insights to the understanding of the 

strengths and limitations of AI-based medical imaging approaches. These insights 

could inform future research, policy-making, and clinical practice, ultimately 
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improving patient care and outcomes for those affected by retinopathy and other 

vision-threatening diseases. 

C. Objectives Of The Study 

The primary goal of this study is to develop a novel CNN-based model for 

retinopathy detection that incorporates DCT for feature extraction, thereby offering a 

more accurate, efficient, and robust diagnostic tool for retinopathy diseases. To 

achieve this goal, the study will pursue the following detailed objectives: 

Conduct an extensive literature review to understand the present situation of 

retinopathy detection methods, the application of CNNs in medical imaging, and the 

role of DCT in image processing. This review will provide the foundation for the 

development of the proposed model and identify potential areas for improvement in 

existing approaches. 

Collect and preprocess a dataset of fundus images for model development. The 

dataset will include images with varying stages and types of retinopathies, sourced 

from publicly available databases such as APTOS 2019 BLINDNESS. The 

preprocessing step will involve techniques such as contrast enhancement, noise 

reduction, and vessel segmentation to ensure high-quality input for the model. Data 

augmentation techniques will also be employed to increase the dataset size and 

promote model generalization. 

Implement DCT-based feature extraction to obtain more robust and 

discriminative features from the fundus images. This step will involve applying DCT 

to the preprocessed images, retaining a select number of DCT coefficients that capture 

the most relevant information, and reconstructing the images in the spatial domain. 

The resulting images will serve as input for the CNN model. 

Design, implement, and optimize the CNN model using the extracted features. 

The model architecture will be designed based on existing successful CNN 

architectures, such as Xception, Resnet152v2, with modifications tailored to 

retinopathy detection. The model will be trained using a portion of the dataset, with 

the remaining data reserved for validation and testing. 

Fine-tune the model hyperparameters, such as learning rate, batch size, and the 

number of convolutional layers, to achieve optimal performance. This step will involve 

using techniques such as grid search and cross-validation to systematically explore the 

hyperparameter space and identify the best combination of parameters. 
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To assess the efficacy of the proposed model, we will utilize a carefully curated test 

dataset and analyze its outcomes based on several crucial performance metrics. These 

metrics include: 

• Accuracy: A measure of the model's overall ability to correctly classify both 

the presence and absence of retinopathy diseases. 

• Sensitivity (or Recall): This will shed light on the model's capability to rightly 

pinpoint true positive cases, crucial for early detection and treatment of 

retinopathy. 

• Specificity: This metric will highlight the model's precision in correctly 

identifying true negative cases, ensuring patients without the disease aren't 

mistakenly diagnosed. 

• F1-score: Serving as the harmonic mean of precision and recall, this score will 

encapsulate a balanced view of the model's performance. 

• Area Under the ROC Curve (AUC-ROC): Representing the model's true 

positive rate against its false positive rate, the AUC provides a comprehensive 

metric for the model's diagnostic ability across varying thresholds. 

• By examining the model through these lenses, we aim to delve into its 

competence in recognizing retinopathy diseases and to determine its suitability 

for implementation in a clinical environment. 

           Compare the performance of the proposed model with existing methods, 

including other CNN-based models and traditional diagnostic techniques, such as 

fundus examination, OCT, and fluorescein angiography. This comparison will help 

identify potential improvements and areas for future research. 

Discuss the implications of the findings for medical professionals, patients, and the 

broader healthcare system. By developing a more accurate, efficient, and robust model 

for retinopathy detection, the study aims to contribute to the early diagnosis and 

treatment of retinopathy, ultimately helping to preserve vision for those affected by 

these diseases. The study will also explore the potential applications of the proposed 

model beyond retinopathy detection, such as the diagnosis of other eye diseases or 

medical imaging tasks. 

Investigate the potential for transfer learning in the proposed model by 

exploring the effectiveness of using pre-trained CNN models as a starting point. This 

objective will assess whether leveraging existing CNN models trained on large-scale 
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image datasets, such as ImageNet, can further improve the performance of the 

retinopathy detection model by providing an effective feature extraction base. 

Assess the impact of different DCT coefficient selection strategies on the 

performance of the proposed model. This objective will explore various methods for 

retaining the most relevant DCT coefficients and examine their influence on the 

model's accuracy, efficiency, and robustness. The analysis will help identify the 

optimal DCT coefficient selection approach for retinopathy detection. 

Evaluate the robustness of the proposed model against various image artifacts 

and distortions, such as blur, noise, and uneven illumination. This objective will test 

the model's performance under challenging conditions and help identify potential areas 

for improvement to ensure reliable retinopathy detection in real-world clinical settings. 

Investigate the interpretability of the proposed model by examining the features 

and patterns learned by the CNN during training. This objective will provide insights 

into the model's decision-making process, which is crucial for building trust and 

acceptance among medical professionals and facilitating the adoption of AI-based 

diagnostic tools in clinical practice. 

Explore the potential for integrating the proposed model into a telemedicine 

platform to enhance the accessibility of retinopathy screening and diagnosis. This 

objective will assess the feasibility of deploying the model in remote or resource-

limited settings, enabling more patients to access early diagnosis and treatment for 

retinopathy diseases. 

Conduct a cost-benefit analysis of the proposed model compared to traditional 

diagnostic methods, such as fundus examination, OCT, and fluorescein angiography. 

This objective will provide an understanding of the potential economic benefits 

associated with adopting the proposed model in clinical settings, considering factors 

such as equipment costs, personnel training, and time efficiency. 

Assess the scalability of the proposed model to handle large-scale screening 

programs and multi-center studies. This objective will evaluate the model's capacity to 

process and analyze large volumes of fundus images efficiently and accurately, which 

is essential for its successful implementation in large-scale retinopathy screening  

initiatives. 

In summary, the study aims To build and assess a novel CNN-based model for 

retinopathy detection that incorporates DCT for feature extraction. The detailed 

objectives outlined above will guide the research process, ensuring a comprehensive 
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and rigorous approach to addressing the challenges associated with retinopathy 

diagnosis and improving patient outcomes. 

D. Scope And Limitations 

The scope and limitations of this study are outlined below to provide a clear 

understanding of the research boundaries and the potential constraints that may impact 

the study's findings. 

1. Scope 

The study focuses on retinopathy detection, specifically targeting diseases such 

as diabetic retinopathy, retinopathy of prematurity, and hypertensive retinopathy. The 

proposed model will be designed to identify and classify different stages and types of 

retinopathies based on fundus images. 

The research will utilize publicly available retinopathy dataset, such as APTOS 

2019 Blindness Detection dataset. The dataset will include images with varying 

degrees of retinopathy severity and different demographic profiles to ensure the 

model's generalizability. 

The study will investigate the integration of DCT-based feature extraction into 

the CNN model to improve retinopathy detection performance. The focus will be on 

evaluating different DCT coefficient selection strategies and their impact on the 

model's accuracy, efficiency, and robustness. 

The proposed model's performance will be evaluated against existing 

retinopathy detection methods, including other CNN-based models and traditional 

diagnostic techniques such as fundus examination, OCT, and fluorescein angiography. 

This comparison will provide insights into the model's effectiveness and potential 

advantages over existing approaches. 

The research will explore the potential applications of the proposed model 

beyond retinopathy detection, such as the diagnosis of other eye diseases or medical 

imaging tasks. The study will also assess the feasibility of integrating the model into 

telemedicine platforms to enhance the accessibility of retinopathy screening and 

diagnosis. 

The study will explore the potential benefits of transfer learning in the proposed 

model by examining the impact of using pre-trained CNN models, such as those 

trained on ImageNet, as a starting point for feature extraction. This investigation will 
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assess whether transfer learning can further improve the model's performance in 

retinopathy detection. 

The research will also address the scalability of the proposed model, evaluating 

its ability to handle large volumes of fundus images efficiently and accurately. This 

assessment will be crucial for the successful implementation of the model in large-

scale retinopathy screening initiatives and multi-center studies. 

The study will consider the practical aspects of implementing the proposed 

model in real-world clinical settings, such as the ease of integration with existing 

diagnostic workflows, the impact on medical professionals' workload, and the cost-

effectiveness compared to traditional diagnostic methods. 

The research will also address the robustness of the proposed model against 

various image artifacts and distortions, such as blur, noise, and uneven illumination.              

This evaluation will give details on the model's capacity to perform reliably under 

challenging conditions, which is essential for its practical application in clinical 

settings. 

2. Limitations 

The study's findings will be dependent on the quality and representativeness of 

the fundus image datasets used for model development and evaluation. Potential 

limitations in the datasets, such as the presence of artifacts or a lack of diversity in 

patient demographics, may impact the model's performance and generalizability. 

The proposed model's performance may be influenced by various factors, such as the 

choice of CNN architecture, hyperparameter settings, and DCT coefficient selection 

strategies. While the study will explore these factors systematically, the findings may 

not necessarily represent the optimal solution for retinopathy detection. 

The research will primarily focus on fundus images for retinopathy detection. 

While this imaging modality is widely used in clinical practice, the study's findings 

may not be directly applicable to other imaging techniques. 

The study will not address potential ethical, legal, or regulatory the difficulties 

connected with the adoption of AI-based diagnostic technologies in healthcare, such 

as data privacy, informed consent, or liability. These aspects are important 

considerations for the practical implementation of the proposed model but are beyond 

the scope of this research. 
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The proposed model's interpretability and explain ability may be limited, given 

the complexity of deep learning models and the inherent difficulty in understanding 

their decision-making processes. While the study will explore the features and patterns 

learned by the CNN, the findings may not provide a complete understanding of the 

model's rationale for retinopathy detection. 

The computational resources required for the development and optimization of the 

proposed model may be substantial, particularly when training the CNN on large 

datasets and exploring the hyperparameter space. While the study will attempt to 

optimize computational efficiency, the availability of resources may impose 

limitations on the model's performance and the extent of hyperparameter tuning. 

The study's focus on retinopathy detection using fundus images may limit the 

applicability of the findings to other imaging modalities or other eye diseases. 

However, the proposed model's underlying concepts, such as the integration of DCT-

based feature extraction with CNNs, may still be relevant and valuable for future 

research in these areas. 

The proposed model's clinical adoption may be influenced by factors beyond 

its performance, such as the acceptance and trust of medical professionals, the 

availability of necessary infrastructure, and the legal and regulatory environment. 

While the study will attempt to address some of these concerns, it is important to 

acknowledge that the successful implementation of the model in clinical practice will 

require a multi-faceted approach involving various stakeholders. 

The study will not investigate the potential impact of the proposed model on 

patient outcomes, such as the timely initiation of treatment or the prevention of vision 

loss. While the ultimate goal of the research is to contribute to the early diagnosis and 

treatment of retinopathy diseases, the direct assessment of patient outcomes is beyond 

the scope of this study. 

By acknowledging the scope and limitations of this study, the research aims to 

provide a comprehensive and rigorous analysis of the proposed CNN-based model for 

retinopathy detection that incorporates DCT for feature extraction while being 

transparent about the potential constraints that may impact the findings.
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II. LITERATURE REVIEW 

This chapter presents an in-depth review of the pertinent literature surrounding 

retinopathy diseases, existing diagnostic methodologies, the application of 

Convolutional Neural Networks (CNNs) in medical imaging, the role of Discrete 

Cosine Transform (DCT) in image processing, and prior research on retinopathy 

detection employing both CNNs and DCT. By delving into these areas, the review 

aims to furnish the essential foundation and context required for developing the 

proposed retinopathy detection model. The literature review will be structured as 

follows: 

A comprehensive examination of retinopathy diseases, focusing on their 

various types, symptoms, and risk factors. This section will elucidate the underlying 

biological mechanisms and manifestations of retinopathy diseases, highlighting their 

significance in the field of ophthalmology and their impact on patients' quality of life. 

A thorough analysis of the current diagnostic methods used in retinopathy detection, 

encompassing both traditional techniques and novel approaches. This part of the 

review will assess the strengths and weaknesses of each method, as well as the 

challenges faced by medical professionals in accurately diagnosing retinopathy 

diseases. 

An exploration of the role of Convolutional Neural Networks (CNNs) in 

medical imaging, including their architecture, training processes, and various 

applications. This section will discuss the advantages of CNNs in image analysis tasks 

and their potential to revolutionize the field of medical imaging, particularly in the 

context of retinopathy detection. 

An in-depth discussion of Discrete Cosine Transform (DCT) and its 

applications in image processing, with a focus on its use in feature extraction, 

compression, and noise reduction. This part of the review will provide an 

understanding of the mathematical principles underlying DCT and its effectiveness in 

representing images using a compact set of coefficients. 

A critical evaluation of the existing research on retinopathy detection using 

CNNs and DCT, identifying the key advancements, challenges, and opportunities in 
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this domain. This section will synthesize the current state of knowledge on the 

integration of CNNs and DCT in retinopathy detection, highlighting the potential 

benefits of combining these techniques to develop a more accurate, efficient, and 

robust diagnostic model. 

By providing a well-rounded and detailed examination of the relevant 

literature, this chapter will establish a solid foundation for the proposed study on 

retinopathy detection using a CNN-based model that incorporates DCT for feature 

extraction. The insights gained from this review will inform the research design, 

methodology, and analysis, Contributing to the creation of a more effective and 

trustworthy diagnostic tool for retinal illnesses in the future. 

A. Retinopathy diseases: types, symptoms, and risk factors 

Retinopathies, a group of disorders impacting the retina - a light-sensitive tissue 

integral to our vision - is the central focus of my thesis. The ability of these disorders 

to drastically impair vision, even leading to blindness, underlines the significance of 

understanding their various forms, symptoms, related risk factors, and particularly 

their trajectory from a normal stage, through mild, moderate, severe stages, 

culminating in the proliferative stage. 

The first type I'm examining is Diabetic retinopathy, which is primarily a 

complication of diabetes and is a leading cause of blindness among adults. It results 

from sustained high blood sugar levels damaging the blood vessels in the retina. The 

disease presents in two main stages: non-proliferative diabetic retinopathy (NPDR), 

which comprises the mild to severe stages, and proliferative diabetic retinopathy 

(PDR), representing the most severe stage. The typical symptoms, such as blurred 

vision, floaters, and dark spots, along with difficulties seeing in low light, can escalate 

over time. Risk factors include the duration of diabetes, inadequate glycemic control, 

hypertension, elevated cholesterol levels, and kidney disease. 

Secondly, I've looked into Retinopathy of Prematurity (ROP). This condition 

primarily affects premature infants, especially those with low birth weight and 

gestational age. The premature and abnormal growth of retinal blood vessels can lead 

to retinal scarring, detachment, and eventually, vision loss. The progression of ROP 

spans five stages, from mild to severe. Some cases of ROP may resolve independently; 

however, more severe cases require intervention such as laser therapy, cryotherapy, or 
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vitrectomy. The main risk factors are premature birth, low birth weight, the necessity 

for oxygen therapy, and other systemic health complications. 

Lastly, I've delved into Hypertensive retinopathy. Chronic high blood pressure 

can lead to damage to the retina's blood vessels, causing hypertensive retinopathy. 

Initial damage can present as mild swelling and hemorrhages. As the condition 

advances, cotton wool spots, or areas of localized retinal ischemia, emerge. In severe 

cases, hypertensive choroidopathy and hypertensive optic neuropathy can develop, 

causing further vision loss. Symptoms can be subtle or non-existent, underscoring the 

importance of regular eye examinations for early detection. Risk factors include poorly 

controlled hypertension, duration of hypertension, older age, and other cardiovascular 

risks. 

 

Figure 3: Stages of diabetic retinopathy
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Table 1: Severity stages 

Stage Severity Description 

Normal - Retina with no apparent 

signs of retinopathy. 

Mild Mild Retinopathy Early signs of retinopathy, 

often no symptoms. 

Moderate Moderate Retinopathy Further weakening of 

retinal blood vessels. Some 

visual symptoms might be 

observed. 

Severe Severe Retinopathy Pronounced damage to 

retinal blood vessels. 

Symptoms may be more 

noticeable and impactful. 

Proliferative Proliferative Retinopathy Growth of new, abnormal 

blood vessels. Can lead to 

severe vision loss or 

blindness due to 

complications such as 

retinal detachment. 

 

B. Current Diagnostic Methods For Retinopathy 

Accurate and timely diagnosis of retinopathy is crucial for initiating 

appropriate treatment and managing the progression of the disease. This section 

provides a detailed overview of the current diagnostic methods used for retinopathy, 

discussing their principles, advantages, and limitations. 

1. Fundus Examination 

Fundus examination is a fundamental diagnostic tool for retinopathy 

assessment. It involves the visual inspection of the retina using specialized equipment 

such as an ophthalmoscope or a fundus camera. The ophthalmoscope projects a beam 

of light into the eye, allowing the examiner to observe the retina directly. In contrast, 

fundus cameras capture digital images of the retina, which can be stored, analyzed, 

and shared with other healthcare professionals. Fundus examination can reveal signs 
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of retinopathy, such as hemorrhages, microaneurysms, cotton wool spots, and 

abnormal blood vessel growth. While fundus examination is relatively simple and non-

invasive, its accuracy depends on the examiner's skill and experience. Moreover, the 

quality of the images captured may be affected by factors such as media       opacity 

(e.g., cataracts) and patient cooperation. 

2. Optical coherence tomography (OCT) 

OCT is a non-invasive imaging technique that uses low-coherence light to 

generate high-resolution, cross-sectional images of the retina. By measuring the echo 

time delay of the reflected light, OCT can provide detailed information about the 

retinal layers' structure and thickness. OCT is particularly useful for detecting and 

monitoring retinal edema, which is a common feature of diabetic retinopathy and other 

retinopathy diseases. OCT also enables the assessment of other retinal pathologies, 

such as macular holes, epiretinal membranes, and choroidal neovascularization. 

Despite its high resolution and ability to detect subtle changes in retinal structure, OCT 

is limited by its reliance on patient cooperation and its sensitivity to eye movements. 

 

Figure 4: Differences in the choroidal structures at different stages of diabetic 

retinopathy(https://doi.org/10.1038/s41598-019-52750-0) 

3. Fluorescein Angiography 

Fluorescein angiography is an invasive diagnostic method that involves the 

intravenous injection of a fluorescent dye (fluorescein) followed by a series of retinal 

images captured as the dye circulates through the blood vessels. The images can reveal 

abnormalities in retinal blood vessels, such as leakage, blockages, and 

neovascularization, which are indicative of retinopathy. Fluorescein angiography is 

particularly useful for diagnosing and monitoring proliferative diabetic retinopathy 

and assessing the need for laser photocoagulation or other treatments. However, this 

https://doi.org/10.1038/s41598-019-52750-0
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technique carries potential risks and side effects, such as allergic reactions to the dye, 

nausea, and transient changes in blood pressure. Additionally, the quality of the images 

may be affected by factors such as patient movement and media opacity. 

4. Automated Retinal İmage Analysis 

With advances in computer vision and artificial intelligence, automated retinal 

image analysis has emerged as a promising diagnostic tool for retinopathy. These 

methods frequently entail the use of machine learning approaches such as 

Convolutional Neural Networks. to analyze retinal images captured by fundus cameras 

or other imaging devices. Automated retinal image analysis has the potential to 

improve the accuracy, efficiency, and accessibility of retinopathy screening, 

particularly in primary care settings and remote areas with limited access to specialized 

eye care. However, the performance of these algorithms depends on the quality and 

representativeness of the training data, and their generalizability to diverse populations 

and imaging devices remains an area of ongoing research. 

In conclusion, current diagnostic methods for retinopathy include fundus 

examination, optical coherence tomography, fluorescein angiography, and automated 

retinal image analysis. Each method has its strengths and limitations, and their use in 

clinical practice often depends on factors such as the specific type and severity. 

C. Convolutional Neural Networks (Cnns) İn Medical İmaging 

In recent times, Convolutional Neural Networks (CNNs) have garnered 

considerable interest owing to their outstanding capabilities in a range of image 

processing activities. including object detection, segmentation, and classification. 

CNNs have been increasingly applied to medical imaging, where they show great 

potential to enhance the accuracy and efficiency of illness diagnosis and prognosis. 

This section will provide a detailed overview of CNNs, their architecture, Machine 

learning methodologies, such as Convolutional Neural Networks, are commonly used 

in these procedures. 

1. CNN Architecture 

A typical CNN architecture consists of several layers, including input, 

convolutional, activation, pooling, and fully connected layers, which are organized in 

a hierarchical manner. The input layer takes raw pixel values from an image, while the 
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convolutional layers apply filters to extract local features, such as edges, corners, and 

textures. Activation layers introduce non-linearity to the network, usually through 

functions like ReLU (Rectified Linear Unit) or sigmoid. Pooling layers reduce the 

spatial dimensions of the feature maps, thereby decreasing computational complexity 

and improving the network's translational invariance. Finally, fully connected layers 

aggregate and classify the extracted features into distinct categories, such as healthy 

or diseased tissue. 

2. CNN Training 

CNNs are trained using a large dataset of labeled images through a process 

called supervised learning. The training process involves adjusting the weights and 

biases of the network to minimize the difference between the predicted output and the 

ground truth labels. This optimization is usually performed using stochastic gradient 

descent or other variants. During training, the network learns to recognize relevant 

patterns and features in the images, which can then be used for classification or 

segmentation tasks. 

3. Applications Of Cnns İn Medical İmaging 

CNNs have been successfully applied to various medical imaging modalities, 

such as magnetic resonance imaging (MRI), computed tomography (CT), ultrasound, 

and optical coherence tomography. Some common applications of CNNs in medical 

imaging include: 

Tumor detection and segmentation: CNNs have been used for the accurate 

identification and delineation of tumors in different organs, such as the brain, lungs, 

and breast, improving early diagnosis and treatment planning. 

Organ and tissue segmentation: CNNs can automatically segment organs and 

tissues in medical images, which is essential for tasks like volume estimation, radiation 

therapy planning, and surgical navigation. 

Medical image classification involves determining and assigning labels to 

medical images from a fixed set. The task involves the extraction of features from the 

image, and assigning labels using the extracted features. 



21 

 

4. Disease Classification 

CNNs have demonstrated high accuracy in classifying various diseases and 

abnormalities, such as diabetic retinopathy, age-related macular degeneration, and 

Alzheimer's disease, based on medical images. 

 

5. CNNs İn Retinopathy Detection 

In the context of retinopathy detection, several studies have employed CNNs 

to analyze retinal images for the presence of disease-specific features, such as 

microaneurysms, hemorrhages, and neovascularization. CNNs have shown promising 

results in identifying and classifying retinopathy diseases, with some studies achieving 

performance levels comparable to or even surpassing human experts. CNN-based 

models can also be integrated into automated retinal image analysis systems, 

potentially improving the accessibility and efficiency of retinopathy screening and 

diagnosis. 

            In summary, Convolutional Neural Networks have emerged as a potent 

medical imaging tool, demonstrating remarkable performance in tasks such as object 

detection, segmentation, and classification. Their application to retinopathy detection 

has shown great promise, with the potential to revolutionize disease diagnosis and 

prognosis. However, challenges remain, for example, big, diversified, and well-

annotated datasets are required for training. as well as ensuring the generalizability and 

interpretability of the models. Ongoing research seeks to address these challenges and 

further harness the potential of CNNs in medical imaging and retinopathy detection. 

D. Discrete Cosine Transform (DCT) in İmage Processing 

Discrete Cosine Transform (DCT) is a widely used technique in image 

processing, known for its ability to transform a signal or an image from the spatial 

domain into the frequency domain, thereby facilitating efficient compression, analysis, 

and reconstruction of the original data. This section provides a detailed overview of 

DCT, its underlying principles, and its applications in image processing, with a focus 

on its potential use in retinopathy detection. 

1. Description of DCT 

DCT is a linear, separable, and orthogonal transform that operates on a block 

of data (usually of size NxN) and converts it into a set of coefficients representing the 
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frequencies present in the input data. The basis functions of DCT are real-valued 

cosine functions, which have desirable properties such as energy compaction and 

decorrelation. These properties enable DCT to efficiently represent the input data with 

a relatively small number of coefficients, especially when the data exhibits strong 

spatial correlations, as is common in natural images. 

The One-Dimensional DCT: 

The common DCT definition of a 1-D sequence (One Dimensional) of length N is: 

𝑐(𝑢) = α(u)∑ 𝑓(𝑥)cos⁡[
𝜋(2𝑥+1)𝑢

2𝑁
]

𝑁=1

𝑥=0
  (1) 

For u = 0,1,2, …., 𝑁 = 1. Similarly, the inverse transformation is defined as: 

𝑓(𝑥) =∑ 𝛼(𝑢)𝐶(𝑢) cos[
𝜋(2𝑥+1)𝑢

2𝑁
]

𝑁−1

𝑢=0
 (2) 

For x = 0,1, 2, … , N=1. In both equations (1) and (2) α(u) is defined as: 

 

α(u) =

{
 

 √
1

𝑁
, 𝑓𝑜𝑟⁡⁡𝑢 = 0

√
2

𝑁
, 𝑓𝑜𝑟⁡𝑢 ≠ 0

                   (3) 

It is clear from (1) that for 𝑢 = 0𝑐(𝑢 = 0) = √
1

𝑁
∑ 𝑓(𝑥)𝑁−1
𝑥=0  Thus, the first transform 

coefficient is the average value of the sample sequence. 

2. The Two-Dimensional DCT 

The objective of this document is to study the efficacy of DCT on images. This 

necessitates the extension of ideas presented in the last section to a two-dimensional 

space. The 2-D DCT is a direct extension of the 1-D case and is: 

𝑐(𝑢, 𝑣) = α(u)α(v)∑ ∑ 𝑓(𝑥, 𝑦)cos⁡[
𝜋(2𝑥+1)𝑢

2𝑁
]cos⁡[

𝜋(2𝑦+1)𝑣

2𝑁
]𝑁−1

𝑦=0
N−1
x=0   (4)   

 

For 𝑢, 𝑣 = 0,1,2, … ,𝑁 − 1⁡ and α(u)⁡and⁡α(v) are defined in (3). The inverse 

transform is defined as: 

𝑓(𝑥, 𝑦) = ⁡∑ ∑ α(u)α(v)𝑐(𝑢, 𝑣)cos⁡[
𝜋(2𝑥+1)𝑢

2𝑁
]cos⁡[

𝜋(2𝑦+1)𝑣

2𝑁
]𝑁−1

𝑣=0
N−1
u=0 ,⁡⁡⁡⁡⁡⁡(5)  
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For 𝑥, 𝑦 = 0,1,2, … ,𝑁 − 1 . The 2-D basis functions can be generated by 

multiplying the horizontally oriented 1-D basis functions with vertically oriented set 

of the same functions (W. B. Pennebaker and J. L. Mitchell, 1993). In the presented 

context, the foundation functions corresponding to 8N are depicted. A closer 

observation reveals that these foundation functions display a systematic escalation in 

frequency, evident in both vertical and horizontal orientations. When examining the 

top left foundation function, it becomes apparent that its existence is attributed to the 

multiplication of the DC component, as showcased in Figure 5, with its respective 

transpose. Owing to this particular interaction, this function maintains a uniform value 

throughout. Because of its consistent nature and origins from the DC component, it is 

commonly labeled as the DC coefficient. This coefficient plays a pivotal role in 

understanding the underlying principles of the model and its interpretation in the 

broader scheme of the study. 

 

Figure 5: Two dimensional DCT basis functions (N = 8). Neutral gray represents 

zero, white represents positive amplitudes, and black represents negative amplitude 

(W. B. Pennebaker and J. L. Mitchell, 1993). 

 

3. DCT İn İmage Compression 

One of the most popular applications of DCT is in image compression, where 

it serves as the core component of widely used standards such as JPEG. In this context, 

DCT is applied to small, non-overlapping blocks of an image, generating a set of 

frequency coefficients for each block. Most of the energy in natural images is 

concentrated in low-frequency components, which can be retained, while high-

frequency components can be quantized and compressed to achieve significant data 
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reduction with minimal loss of visual quality. During decompression, the inverse DCT 

(IDCT) is applied to reconstruct the original image from the compressed data. 

4. DCT İn Feature Extraction 

DCT can also be used for feature extraction in image analysis tasks, such as 

pattern recognition, classification, and segmentation. By transforming an image into 

the frequency domain, DCT can help capture relevant features and patterns that are 

less sensitive to noise and other artifacts. These features can then be used as inputs to 

machine learning algorithms, such as support vector machines, decision trees, or deep 

learning models, for various image analysis tasks. The dimensionality of the extracted 

features can be reduced by retaining only a subset of the most significant DCT 

coefficients, thereby reducing computational complexity and improving the efficiency 

of the subsequent processing steps. 

5. DCT İn Retinopathy Detection 

In the context of retinopathy detection, DCT can be employed as a pre-

processing step to extract relevant features from retinal images, such as texture 

patterns, local contrast, and edge information. These features can then be fed into 

machine learning models, such as CNNs, to improve their performance in tasks like 

retinopathy classification and lesion detection. By incorporating DCT-based features 

into the analysis pipeline, it is possible to enhance the robustness and efficiency of 

retinopathy detection algorithms, particularly in situations where the input images are 

of varying quality, resolution, or contrast. 

In summary, Discrete Cosine Transform is a versatile and powerful technique 

in image processing, with applications ranging from image compression to feature 

extraction. Its ability to efficiently represent and analyze images in the frequency 

domain makes it particularly suitable for tasks like retinopathy detection, where the 

extraction of meaningful features and patterns is critical for accurate and efficient 

disease diagnosis. By combining DCT with machine learning approaches like CNNs, 

The quality and accessibility of eye care services can be enhanced by creating 

improved retinopathy detection technologies that can handle the difficulties provided 

by various and noisy retinal pictures. 
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E. Related Works On Retinopathy Detection 

Retinopathy detection has been one of the areas in medical diagnostics that 

have experienced considerable advancements due to the joint use of Convolutional 

Neural Networks (CNNs) and Discrete Cosine Transform (DCT). These two 

methodologies, when incorporated together, promise to enhance the accuracy, 

efficiency, and robustness of diagnostic algorithms. 

The utilization of deep learning in the realm of medical imaging offers 

enhanced diagnostic precision and treatment planning capabilities, as indicated by 

research from: 

Ali and colleagues. Techniques like IMNets are pivotal tools in this 

advancement. Nevertheless, it's vital to complement machine learning with the 

expertise of certified healthcare practitioners. IMNets, or Incremental Modular 

Networks, uniquely build deep learning models by adding modules when required 

rather than relying on a singular expansive network. This allows the model to 

specialize in certain patterns crucial for a specific task, instead of trying to understand 

everything simultaneously. 

A hybrid methodology involving deep learning was used to classify Diabetic 

Retinopathy in a study. By utilizing VGG16 and VGG19 neural networks, images were 

recognized and their features were noted. The analysis used four severity scales: 

proliferative, mild, moderate, and severe. Results from this research demonstrated an 

85% recall, a 90.4% F1 score, and an overall 90.60% accuracy. Gunasekaran and his 

team emphasized the potential of retinopathy images in diagnosing diabetes, despite 

the inherent challenges. A deep recurrent neural network (RNN) was employed in their 

study, achieving a commendable 95.5% accuracy rate in predicting Diabetic 

Retinopathy. 

Khan and colleagues employed architectures like VGG-net, ResNet, and 

InceptionV3, leveraging transfer learning. For preprocessing, they applied the 

Gaussian method to reduce noise, aiming for enhanced outcomes. Their research 

encompassed five DR variants, with InceptionV3 outperforming other models, 

exhibiting 81.2% training accuracy and 79.4% testing accuracy. 

Fang and team introduced the DAG network model, integrating features from 

fundus images for DR classification. After extracting three critical features, the DAG 
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network undertook the task of learning and merging these features. The model's 

efficiency was assessed using data from a hospital and the DIARETDB1 dataset. 

Elloumi and associates proposed a method to screen DR fundus images taken 

with smartphones. Despite the potential quality limitations of these images, the 

NasnetMobile technique was employed for feature extraction. The research used a 

dataset of 440 images, and the model demonstrated impressive results across various 

metrics. 

Kanakaprabha and colleagues evaluated various deep learning algorithms for 

DR prediction, including CNN, VGG16, VGG19, and others. Sridhar recommended a 

CNN-based model for DR detection, trained on a public dataset from Kaggle, 

achieving superior accuracy. 

Das and his team proposed a system for DR classification based on the 

characteristics of segmented fundus images. With the DIARETDB1 dataset, their 

model exhibited 97.2% precision and 98.7% accuracy. Vives-Boix and team 

implemented convolutional neural network-based meta-plasticity to recognize DR in 

images, attaining noteworthy results. 

Luo and associates addressed the limitations of current DR classification 

methods by proposing a multi-view fundus image technique combined with 

convolutional neural networks. The model's performance was compared against 

existing DR detection systems. Adriman analyzed the efficacy of several deep learning 

networks for DR detection, using the APTOS 2019 Blindness Detection dataset. 

Multiple other studies by researchers like Fatima, Qureshi, Kalyani, Gayathri, 

Bodapati, Math, and Gao have explored various methodologies, networks, and datasets 

to improve DR detection and categorization. Kobat and team highlighted the impact 

of DR on retinal blood vessels. Using a pre-trained DenseNET model, they segmented 

digitized fundus images, achieving an 84.90% accuracy over multiple tests. 



27 

 

III. METHODOLOGY 

This section presents a detailed description of the methodology that will be 

employed in this study for the development of a Convolutional Neural Network 

(CNN)-based model to effectively detect retinopathy diseases by leveraging the 

Discrete Cosine Transform (DCT). The methodology is systematically divided into 

multiple steps, encompassing data collection and preprocessing, DCT-based feature 

extraction, design of the CNN architecture, model training and validation, and 

ultimately, the evaluation of the model's performance. 

 

Figure 6: Proposed Diabetic Retinopathy Classification Framework 

 

A. Data Collection and Preprocessing  

The initial phase of the methodology necessitates the gathering of a 

comprehensive dataset comprising retinal images, accompanied by their respective 

ground truth labels for retinopathy diseases. This dataset can be obtained from publicly 

accessible sources like APTOS 2019 Blindness Detection dataset and Kaggle. These 

datasets primarily consist of retinal images captured through fundus photography in 5 
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categories and are annotated by experts to indicate the presence and severity of 

retinopathy. 

It is critical to preprocess the acquired photos in order to preserve consistency 

and improve the quality of the supplied data. The following steps may be included in 

the preprocessing phase: 

• Image Resizing: Standardize the dimensions of all images in the dataset by 

resizing them to a consistent resolution. 

• Image Normalization: The photos' pixel values should be adjusted to a 

consistent range, usually between 0 and 1. 

• Image Enhancement: Employ techniques such as contrast stretching, histogram 

equalization, or adaptive filtering to improve the visibility of retinal structures 

and lesions. 

• Data Augmentation: Generate additional training samples by applying random 

transformations like rotation, scaling, flipping, or cropping to the original 

images. This helps enrich the dataset and enhances the model's generalizability. 

1. Feature Extraction Using DCT 

Once the images have been preprocessed, the DCT will be utilized to extract 

relevant features from the retinal images. This entails dividing each image into non-

overlapping blocks of fixed dimensions (e.g., 8x8 pixels) and calculating the DCT 

coefficients for every block. The most significant DCT coefficients, representing the 

low-frequency components of the image, can be preserved as features for subsequent 

analysis. 

2. CNN Architecture Design  

The subsequent step involves designing the architecture of the CNN model that 

will be employed for retinopathy detection. The model may comprise multiple layers, 

including convolutional, activation, pooling, and fully connected layers. The DCT 

features extracted in the previous step can be integrated into the CNN architecture in 

a variety of ways, such as adding them as additional input channels, feeding them to a 

separate branch of the network, or using them as intermediate targets for auxiliary 

prediction tasks. The selection of network architecture, layer configurations, and 

training parameters will be guided by the literature review and informed by empirical 

experimentation. 
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3. Training And Validation  

Using a supervised learning technique, the CNN model will be trained on the 

preprocessed retinal visuals and their related ground truth labels. The training process 

entails iteratively adjusting the weights and biases of the network to minimize the 

discrepancy between the predicted output and the ground truth labels, typically 

employing stochastic gradient descent or other optimization algorithms. The model's 

performance will be monitored using a validation set comprising a subset of images 

not used for training. By doing this, overfitting is avoided and it is ensured that the 

model generalizes effectively to new data. 

4. Performance Evaluation  

Finally, the performance of the CNN model will be assessed using a test set of 

retinal images not utilized during training or validation. Various metrics can be 

employed to evaluate the model's performance, such as accuracy, sensitivity, 

specificity, F1 score, and area under the receiver operating characteristic (ROC) curve. 

The outcomes of the evaluation will be compared with existing methods for 

retinopathy detection, as documented in the literature, to ascertain the effectiveness 

and potential advantages of the proposed approach. 

 

B. Data Collection And Preprocessing  

Constructing a proficient Convolutional Neural Network (CNN) model to 

detect retinopathy diseases via Discrete Cosine Transform (DCT) requires an initial 

phase of comprehensive data collection and meticulous preprocessing. This crucial 

phase sets the precedent for subsequent stages as it directly impacts the efficacy of the 

model by defining the quality and relevance of the gathered data. This section offers 

an in-depth perspective on the initial steps of data collection and preprocessing, 

emphasizing the importance of dataset selection and outlining vital preprocessing 

stages with corresponding justifications. 

1. Data Collection  

The creation of a robust model capable of learning the complexities of 

retinopathy diseases necessitates an extensive dataset of retinal images coupled with 

corresponding accurate labels. This dataset should incorporate a broad range of 

images, portraying various types and stages of retinopathy diseases. For this project, 
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we used APTOS 2019 Blindness Detection dataset. This dataset is a product of a 

mission by Aravind Eye Hospital in India to identify and prevent diabetic retinopathy, 

especially in rural areas where medical screening is challenging. It includes thousands 

of retinal images acquired from these regions, aiming to expedite disease detection, 

potentially preventing irreversible blindness. The APTOS 2019 dataset includes two 

categories: 'train_images' with 3662 images and 'test_images' with 1928 images, all in 

PNG format as you see in figure bellow. 

 

Figure 7: Pie chart analysis of number of images on each target label 

 

2. Data Preprocessing 

We have implemented both Convolutional Neural Network based model and 

DCT model and subsequently tested with both quantized and un-quantized coefficients 

of PNG compressed data for image classification. The compressed images were 

partially decoded and the DCT coefficients obtained were fed as input to the neural 

network after Up-sampling and Downsampling the Y, Cb, Cr components, and 

concatenated them as one unit. The process of Up-sampling and Down -sampling is 

further called as transformation. The chosen dataset undergoes preprocessing to 

enhance data quality and ensure consistency across the dataset. Preprocessing plays an 

instrumental role in guiding the model to concentrate on crucial features while 

diminishing the influence of noise and other non-relevant factors. The preprocessing 

stage includes: 
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• Image Resizing: The images are resized to standard dimensions of 224x224 

pixels, ensuring homogeneity in the input data and simplifying subsequent 

processing stages. 

• Image Enhancement: Techniques such as contrast stretching, histogram 

equalization, or adaptive filtering are applied to augment the visibility of retinal 

structures and lesions, aiding the model in learning more effectively. 

Additionally, we employ the function crop_image_from_gray() to crop 

irrelevant or dark regions from the image and the function preprocess_image() to 

prepare each image for input into the model. 

The data collection and preprocessing phase is an indispensable stage of the 

methodology, setting the foundation for the development of an efficient CNN-based 

retinopathy detection model. By providing the model with access to a diverse, high-

quality set of retinal images from the APTOS 2019 dataset, it can discern the most 

relevant features for detecting retinopathy diseases, thereby achieving optimal 

performance. 

This dataset represents five classes or levels of diabetic retinopathy severity: 

'No_DR', 'Mild', 'Moderate', 'Severe', and 'Proliferate_DR'. Understanding these 

classes is pivotal for interpreting the model's output, providing vital insights into the 

severity of diabetic retinopathy, thereby informing necessary medical interventions. 

C. Dataset Description And Partitioning 

The success of a CNN-based retinopathy detection model hinges upon the 

quality and diversity of the dataset used for training and evaluation. This section delves 

into the description of the selected dataset and explains the partitioning strategy 

employed to divide the dataset into training, validation, and test subsets. 

• Dataset Description: The selected dataset should encompass a wide range of 

retinal images, capturing various types and stages of retinopathy diseases, to 

ensure a comprehensive learning experience for the model. The retinal images 

should be acquired through fundus photography, a non-invasive technique that 

captures high-resolution images of the retina. These images should come with 

expert annotations, indicating the presence and severity of retinopathy 

diseases, as well as any specific lesions that might be present. Ideally, the 
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dataset should include a balanced representation of healthy and diseased 

retinas, while also accounting for potential demographic factors, such as age, 

gender, and ethnicity, to ensure a robust and generalizable model. 

• Partitioning Strategy: After acquiring a suitable dataset and preprocessing the 

images, the next crucial step is to partition the dataset into three distinct 

subsets: training, validation, and test sets. This partitioning strategy is crucial 

to ensure that the model's performance is evaluated objectively and to prevent 

overfitting. The partitioning can be carried out using different approaches, such 

as random sampling, stratified sampling, or k-fold cross-validation, depending 

on the size and characteristics of the dataset. 

• Training Set: This subset of the dataset will be used to train the CNN model, 

allowing it to learn the patterns and features associated with retinopathy 

diseases. The size of the training set should be large enough to enable the model 

to learn the intricacies of the problem effectively. Typically, 60-70% of the 

total dataset is allocated for training. 

• Validation Set: The validation set plays a vital role in monitoring the model's 

performance during the training process. It comprises a subset of images that 

are not used for training, enabling the assessment of the model's generalization 

capabilities on unseen data. The validation set helps in fine-tuning the model's 

architecture and training parameters, ensuring optimal performance. 

Approximately 10-20% of the total dataset is set aside for validation purposes. 

• Test Set: The test set serves as the final evaluation metric for the model's 

performance. It contains a subset of images not used during training or 

validation and provides an unbiased assessment of the model's effectiveness in 

detecting retinopathy diseases on new, unseen data. The test set should ideally 

represent 10-30% of the total dataset. 

In conclusion, this section has described the dataset requirements and 

partitioning strategy essential for the development of a successful CNN-based 

retinopathy detection model. By selecting a diverse and representative dataset and 

partitioning it into appropriate training, validation, and test subsets, the model can be 

trained, fine-tuned, and evaluated effectively, ensuring optimal performance and 

generalizability. 
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D. Image Preprocessing Techniques 

Image preprocessing is a crucial step in the development of a CNN-based 

retinopathy detection model, as it prepares the dataset for effective learning by 

enhancing the image quality, ensuring consistency, and increasing the model's 

robustness. This section focuses on the specific image preprocessing techniques 

employed in this study. 

1. Image Resizing  

To ensure consistency across the dataset, all retinal images should be resized 

to a fixed resolution. This process allows the model to accept images of varying 

dimensions while ensuring that the input data is homogeneous.  

In the preprocessing pipeline, a constant IMG_SIZE is set to 256, representing 

the uniform size (both in terms of width and height) to which all input images will be 

resized. This standardization is crucial for ensuring consistent input dimensions for 

subsequent machine learning models, given that neural networks, in particular, require 

fixed-size input tensors. The preprocess_image function is tasked with several 

preprocessing steps, including reading an image from its file path, converting its color 

representation, cropping away potential dark borders, and resizing it to the 

predetermined IMG_SIZE. To facilitate the storage of preprocessed images for 

training, the number of images in the dataset, denoted as N, is inferred from the first 

dimension of the train_Data array. Subsequently, an empty array x_train of shape (N, 

IMG_SIZE, IMG_SIZE, 3) is initialized. This structure is designed to accommodate 

N RGB images, each of dimension 256x256. The chosen data type for this array is 

np.uint8, optimal for representing standard 8-bit image pixel intensities ranging from 

0 to 255. Through these steps, the preprocessing pipeline ensures a consistent format 

and size for all images, making them ready for training and evaluation in machine 

learning models. 

2. Image Enhancement 

Enhancing the images improves the visibility of retinal structures and lesions, 

allowing the model to learn more effectively from the dataset. Various image 

enhancement techniques can be employed, such as:
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i. Contrast Stretching 

This technique improves the contrast in the image by stretching the range of 

intensity values to cover the entire dynamic range. 

In the updated preprocessing pipeline, the Python Imaging Library (PIL) is 

employed to read and handle images, known for its extensive file format support and 

efficient opening of large images. Specifically, the Image.open() method from PIL is 

utilized to load the image, which is subsequently converted to a numpy array for 

further processing. 

Once the image data is available as a numpy array, its color space is 

transformed from RGB to BGR using OpenCV's cvtColor method. This transformation 

facilitates subsequent image operations that are to be carried out using OpenCV 

functions, which conventionally expect images in the BGR format. 

Post color space conversion, the previously discussed crop_image_from_gray 

function is employed to eliminate dark borders from the image. The cropped image is 

then resized to the predetermined dimensions, given by the constant IMG_SIZE. 

An essential robustness measure has been introduced to check if the image is 

empty after preprocessing steps, as certain operations might lead to an empty image 

matrix. If the image is found to be empty, a ValueError is raised with a descriptive 

error message, enabling developers or users to identify potential issues with the input 

image or the processing steps. 

To enhance the image's features and diminish noise, a Gaussian blur is applied 

using OpenCV's GaussianBlur function, with sigmaX as the standard deviation. A 

technique to sharpen the image is then employed, where a weighted sum of the original 

image and its blurred version is calculated. This amplifies the details and intensifies 

the contrast, making features more pronounced. 

Finally, before returning the preprocessed image, its color space is converted 

back to RGB, aligning with common image representation standards and ensuring 

compatibility with potential downstream tasks or visualizations. 

This comprehensive preprocessing pipeline ensures that input images are not 

only standardized in size but are also enhanced for clarity and feature visibility, making 

them optimally suited for machine learning or computer vision tasks. 
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3. Data Augmentation 

This process entails creating extra training instances by introducing varied 

alterations to the initial images. This step is particularly valuable when dealing with a 

limited number of training samples or when aiming to improve the model's 

performance on diverse and noisy data.  

For our developed method, here is an explanation of data augmentation, the 

employed ImageDataGenerator introduces the following transformations: 

• zoom_range=0.6: This parameter allows for a random zoom on the image. The 

value 0.6 means that the image can be zoomed in or out by up to 60%. This 

helps the model to recognize objects or features of various scales. 

• fill_mode='constant' and cval=0.: When an image is rotated or shifted, some of 

its parts might fall outside the original frame, leaving empty spaces in the 

image. The fill_mode parameter determines how to fill these spaces. The 

chosen mode, 'constant', fills these gaps with a constant value, which is defined 

as 0. by the cval parameter 

• horizontal_flip=True and vertical_flip=True: These parameters enable the 

random flipping of images both horizontally and vertically. This introduces 

variability in the spatial orientation of features, aiding the model in being 

orientation-invariant. 

• rotation_range=360: Images can be randomly rotated within a range of 0 to 360 

degrees, offering full rotational variability. 

• width_shift_range=0.1 and height_shift_range=0.1: These parameters allow 

the image to be randomly shifted vertically and horizontally by up to 10% of 

its width and height, respectively 

• rescale=1./255: All pixel values in the image are scaled to the range [0,1] by 

dividing them by 255. This normalization is essential for most deep learning 

models as it ensures that input values are small, making the optimization 

process smoother. 

In summary, the chosen data augmentation techniques ensure During training, 

the model is provided with a wide range of modifications of the original photos, 

enhancing its capacity to generalize to new data. The application of such 
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transformations becomes crucial, especially in medical imaging or scenarios where 

capturing the full diversity of real-world data is challenging, and here is the images 

after preprocessing: 

 

Figure 8: Image before preprocessing           Figure 9: Image after preprocessing 

 

Figure 10: preprocessed image 

 

 

E. Feature extraction using Discrete Cosine Transform (DCT) 

Feature extraction is a vital step in the development of a CNN-based 

retinopathy detection model, as it enables the model to focus on the most relevant 

features while reducing computational complexity. The Discrete Cosine Transform 

(DCT) is a widely used technique for feature extraction in image processing 

applications. This section provides a detailed overview of the DCT-based feature 

extraction process employed in this study. 

1. Discrete Cosine Transform (DCT) 

The DCT is a linear mathematical transformation that converts a given image 

from the spatial domain to the frequency domain. The frequency domain 

representation of the image emphasizes the energy distribution across different 
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frequency bands, allowing the model to focus on the most relevant and informative 

features. DCT is particularly suitable for retinopathy detection, as it captures the 

essential structural information present in the retinal images, such as blood vessels and 

lesions, while eliminating high-frequency noise. 

2. DCT Application 

To apply DCT to the preprocessed retinal images, the images are first divided 

into non-overlapping blocks of fixed size (e.g., 8x8 or 16x16 pixels). Next, the DCT 

is applied independently to each block, resulting in a set of DCT coefficients that 

represent the energy distribution across different spatial frequencies. These DCT 

coefficients form a matrix of the same size as the original block, with the top-left 

element (DC coefficient) representing the average energy of the block and the 

remaining elements (AC coefficients) corresponding to the energy distribution across 

different frequency bands. 

3. DCT Feature Selection 

Since the DCT coefficients capture the energy distribution across various 

frequencies, it is essential to select the most informative features that contribute to 

accurate retinopathy detection. Typically, lower-frequency coefficients (located in the 

top-left corner of the DCT matrix) contain the most relevant structural information, 

while higher-frequency coefficients (located in the bottom-right corner) represent 

noise and other less relevant details. A common approach is to select a subset of the 

low-frequency DCT coefficients, such as the first N coefficients in a zigzag pattern, as 

features for the CNN model. 

Feature Vector Formation: Once the most relevant DCT coefficients are 

selected, they can be organized into a feature vector for each image block. These 

feature vectors serve as the input for the CNN model, allowing it to learn the 

relationships between the extracted features and the presence or severity of retinopathy 

diseases. 

By employing DCT-based feature extraction, the proposed retinopathy 

detection model can efficiently focus on the most informative and relevant features 

present in the retinal images. This approach significantly reduces the computational 

complexity while preserving the essential structural information required for accurate 

retinopathy detection. 
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F. Design And İmplementation Of The Convolutional Neural Network (CNN) 

Model 

The Convolutional Neural Network (CNN) lies at the core of this study, serving 

as the primary tool for retinopathy detection based on the extracted DCT features. This 

section delves into the design and implementation of the CNN model, detailing the 

various components, architecture, and training process. 

1. CNN Architecture 

The architecture of the CNN model consists of several layers, each with a 

specific purpose, working together to learn the patterns and relationships between the 

DCT features and retinopathy diseases. The primary components of the architecture 

include: 

a. Input Layer 

The input layer receives the DCT feature vectors extracted from the retinal 

images, serving as the starting point for the CNN model. 

b. Convolutional Layers 

Integral to the architecture of Convolutional Neural Networks (CNNs), these 

layers specialize in identifying and learning spatial hierarchies and local patterns 

within input data, often images. The primary mechanism of action in these layers is 

the application of convolutional filters. These filters, or small receptive fields, move 

across the input data (e.g., an image) in a sliding window fashion. As they traverse, 

they perform mathematical convolutions, effectively highlighting particular features 

in the image such as edges, textures, and shapes. As a result, they generate what are 

termed as "feature maps" or "activation maps." Each feature map is a representation of 

the input data, focusing on one specific feature or pattern detected by the filter. Over 

subsequent layers, these filters can recognize increasingly complex patterns, enabling 

the model to understand intricate details and spatial relationships in the data. The 

adaptability of convolutional layers in recognizing various patterns makes them a 

cornerstone of deep learning, especially in tasks that involve visual data processing. 

c. Activation Functions 

Non-linear activation functions, such as ReLU (Rectified Linear Unit), 

introduce non-linearity to the model, allowing it to learn complex relationships 

between the input features and the target output. 
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d. Pooling Layers 

Pooling layers reduce the spatial dimensions of the feature maps while 

preserving the most relevant information. This process reduces computational 

complexity and promotes translation invariance, making the model more robust. 

e. Fully Connected Layers  

Fully connected layers are responsible for combining the information from 

previous layers and producing the final output. They map the high-level features 

learned by the convolutional and pooling layers to the desired output, such as 

retinopathy disease classification. 

f. Output Layer 

The output layer generates the final predictions of the model, typically using a 

softmax activation function for multi-class classification problems. The output layer 

should have as many neurons as there are classes in the problem (e.g., healthy, mild 

retinopathy, severe retinopathy). 

2. Model Implementation 

The CNN model can be implemented using popular deep learning frameworks 

such as TensorFlow, PyTorch, or Keras. These frameworks provide high-level APIs 

for defining the model architecture, specifying the training process, and evaluating the 

model's performance. 

3. Training Process 

The training process involves adjusting the model's weights to minimize the 

difference between its predictions and the ground truth labels. This process requires 

the following components: 

a. Loss Function 

The loss function quantifies the discrepancy between the model's predictions 

and the actual labels. Common loss functions for classification tasks include 

categorical cross-entropy or binary cross-entropy. 

b. Optimizer 

The optimizer is responsible for updating the model's weights based on the 

calculated loss. Popular optimizers include Stochastic Gradient Descent (SGD), 

Adam, and RMSProp. 
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c. Hyperparameters 

Hyperparameters control various aspects of the training process, such as the 

learning rate, batch size, and the number of training epochs. These values need to be 

tuned to achieve optimal model performance. 

4. Model Validation and Evaluation 

During the training process, the model's performance should be monitored 

using the validation set. This evaluation helps to prevent overfitting and allows for 

hyperparameter tuning. Once the training is complete, the model's final performance 

can be assessed using the test set, providing an unbiased estimation of its retinopathy 

detection capabilities. 

            By designing and implementing a robust CNN model and training it on the 

preprocessed retinal images with DCT features, the study aims to develop an effective 

tool for retinopathy detection. The architecture, implementation, training process, and 

evaluation strategy detailed in this section ensure that the resulting model is both 

accurate and generalizable, with the potential to significantly improve retinopathy 

detection in real-world clinical settings. By leveraging the power of convolutional 

neural networks and the efficiency of Discrete Cosine Transform-based feature 

extraction, this study aims to provide a reliable, efficient, and automated solution for 

early diagnosis and monitoring of retinopathy diseases, ultimately contributing to 

improved patient outcomes and the overall management of these conditions. 

G. Architecture Of The CNN Model 

The architecture of the CNN model plays a crucial role in determining its 

effectiveness for retinopathy detection. It comprises several interconnected layers 

designed to work together to learn the patterns and relationships between the DCT 

features and retinopathy diseases. This section elaborates on the architecture of the 

CNN model, describing each layer and its purpose in detail. 

1. Input Layer 

The input layer serves as the entry point for the DCT feature vectors extracted 

from the retinal images. It receives these feature vectors and passes them to the 

subsequent layers for further processing. The dimension of the input layer should 

match the size of the feature vectors. 
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2. Convolutional Layers 

Convolutional layers are the fundamental building blocks of Convolutional 

Neural Networks (CNNs). Their primary role is to discern local patterns, structures, 

and spatial relationships within the input data, often images or videos. In the intricate 

architecture of a CNN, several convolutional layers can be layered atop one another. 

This layering allows the network to learn patterns of increasing complexity and 

abstraction as data progresses through the layers. 

In each convolutional layer, a collection of filters, also referred to as kernels, 

is applied. These filters are not static; they are trainable parameters, meaning they 

adjust and refine during the learning process to better identify specific patterns in the 

input. As these filters slide over the input data, they produce what's known as "feature 

maps" or "activation maps." Each feature map represents the response of the input data 

to a particular filter, emphasizing where certain patterns or features are detected. 

3. Activation Functions 

Activation functions introduce non-linearity into the model, allowing it to learn 

complex relationships between input features and output predictions. ReLU (Rectified 

Linear Unit) is a popular choice for activation functions in CNNs due to its 

computational efficiency and ability to mitigate the vanishing gradient problem. 

Activation functions are applied to the output of convolutional layers. 

4. Pooling Layers 

Pooling layers are interspersed between convolutional layers to reduce the 

spatial dimensions of the feature maps, thereby reducing computational complexity 

and promoting translation invariance. Common types of pooling layers include max 

pooling and average pooling, which retain the maximum or average value, 

respectively, within a specified neighborhood of each feature map. 

 

Figure 11: Max pooling layer of the CNN 
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5. Dropout Layers 

Dropout layers can be introduced to the architecture to regularize the model 

and prevent overfitting. They randomly "drop" a proportion of the neurons during 

training, effectively reducing the model's capacity and forcing it to learn more robust 

features. The dropout rate is a hyperparameter that controls the proportion of neurons 

dropped during training. 

6. Fully Connected Layers 

The fully connected layers combine the high-level features learned by the 

convolutional and pooling layers to produce the final output. These layers establish 

dense connections between all neurons in consecutive layers, enabling the model to 

learn global patterns and make predictions based on the extracted features. 

 

 

Figure 12: Flattening Layer 

 

7. Output Layer  

The output layer generates the final predictions of the model. For multi-class 

classification problems, a softmax activation function is typically used to produce 

probability distributions across the different classes. The number of neurons in the 

output layer should equal the number of classes in the problem (e.g., healthy, mild 

retinopathy, severe retinopathy). 

The architecture of the CNN model is designed to effectively learn the patterns 

and relationships between the DCT features and retinopathy diseases. By carefully 

designing and configuring the layers in the architecture, the study aims to create a 

powerful and accurate tool for retinopathy detection, with the potential to improve 

early diagnosis and patient outcomes. 
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H. Activation Functions And Loss Function 

Activation functions and loss functions are essential components of the CNN 

model, as they govern the model's learning process and determine how well it captures 

the relationships between the input features and output predictions. This section 

provides a detailed discussion of the activation functions used within the model and 

the choice of an appropriate loss function. 

1.  Activation Functions 

Activation functions are applied to the output of neurons in a neural network, 

introducing non-linearity and enabling the model to learn complex relationships 

between input features and output predictions. The following activation functions are 

commonly used in CNN models: 

• ReLU (Rectified Linear Unit): ReLU is a popular activation function in CNNs 

due to its computational efficiency and ability to mitigate the vanishing 

gradient problem. ReLU introduces non-linearity by setting all negative values 

to zero, while preserving positive values. This activation function is typically 

applied to the output of convolutional layers and fully connected layers. 

• Leaky ReLU: Leaky ReLU is a variant of the ReLU function that addresses the 

"dying ReLU" problem, in which neurons with negative inputs become 

inactive and cease to learn. Leaky ReLU assigns a small positive slope to 

negative inputs, ensuring that neurons remain active even when their inputs are 

negative. This activation function can be used as an alternative to the standard 

ReLU. 

• Sigmoid: The sigmoid activation function maps input values to the range (0, 

1), providing a smooth, continuous output. While sigmoid functions were 

widely used in early neural networks, they are less common in modern CNNs 

due to their susceptibility to the vanishing gradient problem. 

2. Loss Function 

The loss function quantifies the discrepancy between the model's predictions 

and the actual ground truth labels, guiding the optimization process during training. 

For the retinopathy detection problem, which involves multi-class classification, the 

following loss functions are relevant: 
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3. Categorical Cross-Entropy 

Categorical cross-entropy is a widely used loss function for multi-class 

classification problems. It measures the difference between the predicted probability 

distribution and the true probability distribution, penalizing the model when its 

predictions are far from the actual labels. This loss function is well-suited for problems 

with multiple, mutually exclusive classes, such as retinopathy detection. 

In summary, the careful selection of activation functions and the appropriate 

loss function play a crucial role in the effectiveness of the CNN model for retinopathy 

detection. Activation functions ensure the model's capacity to collect complicated 

information, non-linear relationships between the DCT features and retinopathy 

diseases, while the loss function guides the optimization process to minimize 

prediction errors using proper activation function efficacy and the categorical cross-

entropy loss function, the study aims to develop a reliable and efficient tool for the 

detection and classification of retinopathy diseases, ultimately contributing to 

improved patient outcomes and more effective management of these conditions in 

clinical settings. 

İ. Model Training, Validation, And Optimization 

To ensure the effectiveness of the CNN model for retinopathy detection, a 

systematic approach to model training, validation, and optimization is essential. This 

section outlines the key steps involved in containing the model, validating its 

performance, and fine-tuning the model's hyperparameters to achieve optimal results. 

Training and Validation Data: The dataset is split into separate training and 

validation sets, typically using an 80/20. The training set is used to adjust the model's 

weights during the learning process, while the validation set helps assess the model's 

performance on unseen data and monitor for overfitting. This partitioning enables an 

unbiased evaluation of the model's generalization capabilities. 

Batch Size and Epochs: The batch size refers to the number of samples used 

for each weight update during training. Smaller batch sizes typically lead to more 

stable training, while larger batch sizes allow for faster computation. The total number 

of iterations the model developed performs across the whole training dataset is called 

or we can say represented by the number of epochs. The choice of batch size and 
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epochs should strike a balance between training stability, computational efficiency, 

and achieving convergence. 

Learning Rate and Optimizer: The learning rate is a critical hyperparameter 

that controls the step size during gradient descent optimization. A suitable learning 

rate enables the model to converge efficiently without oscillating or overshooting the 

optimal weights. Popular optimizers for CNNs include Stochastic Gradient Descent 

(SGD), Adam, and RMSprop, which automatically adjust the learning rate during 

training for improved convergence. 

Regularization Techniques: Regularization techniques, such as L1 and L2 

regularization, dropout layers, and early stopping, can help prevent overfitting by 

adding constraints to the model's complexity. These techniques encourage the model 

to learn more robust features and generalize better to new data. 

Hyperparameter Tuning: The model's hyperparameters, including the number 

of layers, filter sizes, learning rate, and regularization strength, may need to be adjusted 

to obtain the best results. The most effective combination of hyperparameters for a 

given issue may be found by exploring the hyperparameter space using techniques like 

grid search, random search, and Bayesian optimization. 

            By following a structured approach to model training, validation, and 

optimization, the study aims to develop a CNN model for retinopathy detection that 

achieves high accuracy and generalizes well to new data. This process will help ensure 

that the proposed model is a reliable and effective tool for detecting and classifying 

retinopathy diseases, contributing to better patient outcomes and more efficient 

management of these conditions. 

To provide a more detailed account of the model training, validation, and 

optimization, the following sub-sections delve deeper into each of these critical 

aspects: 

1. Data Augmentation 

Data augmentation techniques can be applied to the training set to artificially 

increase the dataset size and improve the model's ability to generalize to unseen data. 

Common data augmentation techniques for images include rotation, flipping, 

zooming, and adding noise. By augmenting the dataset, the model can learn more 
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robust features that account for various transformations and variations in retinal 

images. 

2. Cross-Validation 

K-fold cross-validation can be employed to further enhance the evaluation of 

the model's performance. In k-fold cross-validation, the dataset is divided into k equal-

sized subsets. The model is then trained and validated k times, using a different subset 

as the validation set in each iteration. The average performance across all folds is used 

to estimate the model's performance. This method gives a more accurate evaluation of 

the model's capacity for generalization, as it considers multiple training and validation 

set combinations. 

3. Weight Initialization 

The initial values of the model's weights can impact the speed of convergence 

and the quality of the final solution. Techniques such as Glorot initialization, He 

initialization, and LeCun initialization can be employed to provide better initial weight 

values based on the specific activation functions and network architecture. Proper 

weight initialization can lead to faster convergence and improved model performance. 

4. Learning Rate Scheduling 

Instead of using a fixed learning rate throughout the training process, learning 

rate scheduling can be applied to adapt the learning rate based on the training progress. 

Methods such as step decay, exponential decay, and cosine annealing can be used to 

reduce the learning rate over time, ensuring that the model converges more smoothly 

to the optimal solution. 

5. Model Ensemble 

Combining multiple models or training runs in an ensemble can improve the 

overall performance and robustness of the retinopathy detection system. Averaging the 

predictions from multiple models or applying more advanced ensemble techniques, 

such as stacking or bagging, can lead to more accurate and stable predictions by 

leveraging the strengths of each individual model. 

By incorporating these additional considerations into the model training, 

validation, and optimization process, the study aims to develop a highly accurate and 

reliable CNN model for retinopathy detection. Addressing aspects such as data 
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augmentation, cross-validation, weight initialization, learning rate scheduling, and 

model ensembles helps to create a robust and efficient solution capable of effectively 

detecting and classifying retinopathy diseases, thereby contributing to improved 

patient outcomes and better management of these conditions. 

J. Performance Evaluation 

The evaluation of the CNN model's performance is a crucial step in assessing 

its effectiveness in retinopathy detection. This section outlines the key elements 

involved in evaluating the model, including the use of test data, evaluation metrics, 

and the comparison of results to existing methods. 

1. Metrics: Accuracy, Sensitivity, Specificity, And F1-Score 

1. Test Data 

To obtain an unbiased estimate of the model's performance, a separate test 

dataset, not used during training or validation, is employed. This dataset contains 

retinal images with ground truth labels, enabling the evaluation of the model's 

predictions against the true disease classifications. By using test data, the study can 

assess the model's ability to generalize to new, unseen data, which is critical for its 

practical application in a clinical setting. 

2. Evaluation Metrics 

To measure the model's performance, various evaluation metrics are employed 

to provide insights into different aspects of its classification capabilities. The following 

metrics are commonly used for evaluating multi-class classification models: 

• Accuracy: The proportion of correctly classified samples out of the total 

number of samples. Accuracy provides an overall measure in the case of class 

imbalance, the performance of the model may be less informative. 

• Precision: The proportion of true positives out of the total number of predicted 

positives. Precision measures the model's ability to correctly identify positive 

cases while minimizing false positives. 

• Recall (also known as Sensitivity or True Positive Rate): This metric represents 

the proportion of actual positives (true positives) that the model successfully 

identified as such, compared to the total number of actual positives in the 
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dataset. In simpler terms, it gauges how well the model is at detecting the 

positive instances when they are actually there. It's a crucial metric, especially 

in scenarios where missing a positive instance (like a disease or malfunction) 

could have dire consequences. 

• F1-Score: This is a metric that seeks to strike a balance between precision (how 

many of the items identified as positive are actually positive) and recall (how 

many of the actual positives were identified). It is the harmonic mean of these 

two values. By combining precision and recall into a single number, the F1-

score offers a comprehensive measure of the model's accuracy and 

completeness. An F1-score closer to 1 indicates a better balance between 

precision and recall, whereas a score closer to 0 suggests that the model 

struggles either with precision or recall or both. 

• Confusion Matrix: The values in the confusion matrix are used to calculate 

various performance metrics such as accuracy, precision, recall, and F1 score, 

which help to understand the effectiveness of the classifier. The true positives 

(TP) are the number of instances that are correctly classified as positive. False 

positives (FP) are instances that are incorrectly classified as positive when they 

are actually negative. True negatives (TN) are instances that are correctly 

classified as negatives, while false negatives (FN) are instances that are 

incorrectly classified as negatives when they are actually positives. True 

Positives: Positive instances that were correctly classified.  

❖ False Positives: Incorrectly classified positive instances. 

❖ True Negatives: Correctly classified negative instances. 

❖ False Negatives: Incorrectly classified negative instances. 

Accuracy is defined as the total number of correct predictions divided by the 

total number of predictions made by the model. Precision is the ratio of true positive 

predictions to the total number of positive predictions made by the model. Recall, also 

known as sensitivity or the "true positive rate," is the ratio of true positive predictions 

to the total number of actual positive instances in the data. The F1-score is the 

harmonic mean of precision and recall and provides a single metric that balances both 

metrics. Specificity is the ratio of true negative predictions to the total number of actual 
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negative instances in the data. These metrics provide valuable information about the 

performance of a classification model and help identify areas for improvement. 

 

Figure 13: Confusion Matrix for Binary Datasets 

 

The four parameters calculated to compare the performance of each model are: 

• Accuracy: Represents the amount of tests accurately classified by the classifier. 

 

• Precision: Refers to the accuracy of the classifier, specifically the rate at which 

the samples are correctly identified as positive among all the samples classified as 

positive in the test set. 

 

• Recall: Reflects the integrity of the model, also known as the detection rate or 

sensitivity of the model. It measures the successful labeling of positive samples in 

the test set. 

 

• F1-Score: The F1-Score denotes the harmonic average concerning Precision and 

Recall, serving as a crucial metric that ensures an even-handed and comprehensive 

analysis of both the occurrences of false positives and false negatives in a given 

dataset. This balance is vital for understanding the true efficacy of a classification 

system. 
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3. Comparison to Existing Methods 

To establish the value of the proposed CNN model in retinopathy detection, it 

is essential to compare its performance to existing methods, such as other machine 

learning algorithms or manual diagnosis by medical experts. This comparison helps to 

gauge the model's relative effectiveness and identify any advantages or drawbacks 

compared to current practices. 

4. Analysis of Results 

By evaluating the model's performance using the selected metrics and 

comparing it to existing methods, the study can identify the model's strengths and 

weaknesses, as well as potential areas for improvement. This analysis aids in refining 

the model and ensuring that it is a valuable tool for detecting and classifying 

retinopathy diseases in a clinical context. 

By following a comprehensive approach to performance evaluation, the study 

aims to assess the CNN model's effectiveness in retinopathy detection and its potential 

for practical application. Through the use of test data, evaluation metrics, comparison 

to existing methods, and thorough analysis of results, the performance evaluation 

process provides valuable insights into the model's capabilities and potential areas for 

enhancement. 
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IV. EXPERIMENTAL RESULTS  

The model was trained and evaluated using a robust computational setup. The 

experiments were carried out on a 3.2 GHz machine with 16 GB of memory and a 

GTX 1650ti GPU. The development environment was Jupyter Notebook, provided by 

Anaconda, ensuring reliable, reproducible results. 

A. Convolutional Neural Network Model 

 

Figure 14: CNN model Architecture 

The size of each input image is (256, 256, 3). When using Keras, images are 

typically processed in batches of a certain size. As such, an additional dimension is 

introduced to account for the batch size. The actual batch size can vary depending on 

the dataset being used, which is why this dimension is represented by the value 

"None." Hence, the initial shape of the input is represented as (None, 256, 256, 3). 

When a convolution operation is performed on a (256, 256) image with a filter 

size, and considering standard parameters like a stride and dilation rate of 1, along with 

the 'same' padding, the output dimensions remain (256, 256). Given that there are 16 

filters in the first convolutional layer, the output shape becomes (256, 256, 16). 

Following this, the MaxPooling layer, which typically has a stride of 2, reduces the 

spatial dimensions of the image by half. Thus, the output shape post-pooling becomes 

(128, 128, 16). 

The next Conv2D layer with 32 filters processes the pooled output, retaining 

the spatial dimensions at (128, 128) but changing the depth to 32 due to the number of 
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filters. This results in an output shape of (128, 128, 32). Post this convolution 

operation, another MaxPooling layer further halves the spatial dimensions, yielding an 

output shape of (64, 64, 32). 

Continuing in a similar fashion, another convolution is performed on this 

output using 64 filters, yielding an output shape of (64, 64, 64). Yet another 

MaxPooling operation on this output then gives a shape of (32, 32, 64). 

Thereafter, a convolution with 128 filters retains the spatial dimensions but changes 

the depth to 128, producing an output shape of (32, 32, 128). Post-convolution, the 

subsequent MaxPooling layer reduces the dimensions to (16, 16, 128). 

Towards the end of this architecture, a Dropout layer is used, which doesn't 

alter the shape of the tensor but helps in regularizing the model to prevent overfitting. 

This explains the structure and the progression of shapes within the network, 

eventually leading to a model with a total of 16,823,733 parameters, all of which are 

trainable. The number of parameters for a Conv2D layer is given by the following 

Equation (1): 

Parameter= (kernel height*kernel width*input channel*output channel) + (output 

channels that use bias) 

 

Figure 15: The model summary of the created CNN network.
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B. Model Trained Using Our Developed Model 

The developed model was trained and evaluated over 50 epochs. The model 

performance metrics, including loss (cross-entropy loss) and accuracy, were observed 

for both the training and validation set for each epoch. 

 

Figure 16: shows the model summary of the created CNN network 

The initial epoch revealed a training accuracy of 66.05%. On the validation set, 

the accuracy was 70.31%. This established the baseline performance of our model. 

As the epochs progressed, we noticed an increase in accuracy and a decrease in loss 

on both the training and validation sets, indicating the learning capability of our 

model. By the end of the second epoch, the model achieved a training accuracy of 

72.43%, and the validation accuracy improved to 70.74%. 

By the 7th epoch, the validation accuracy had reached 72.44%, and the model's 

loss had reduced to 0.494. At the 8th epoch, we observed a significant jump in the 

validation accuracy, reaching 74.72%. This suggested that the model was generalizing 

well and was capable of classifying unseen data accurately. 

However, in the following epochs, there was a slight increase in the validation 

loss, despite the model's improved accuracy, suggesting a bit of overfitting. After the 

10th epoch, the training accuracy reached 83.78%, and the validation accuracy stood 

at 78.01%. 

C. Model Trained Using Pretrained Model Xception 

In my research project, I leveraged the power of the pre-trained Xception model 

for an image classification task. After applying my preprocessing pipeline and running 

the model, the Xception model demonstrated strong performance. Specifically, during 
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the 21st epoch, the Xception model achieved an impressive accuracy of 74.52% on the 

validation set. This result underscores the efficacy of the Xception model in this 

particular image classification task, illustrating its robust generalization capabilities. 

 

Figure 17: shows the model summary of Pretrained model Xception 

D. Model Trained Using Pretrained Model ResNet152V2 

In a parallel analysis during my research, I applied the same image 

preprocessing procedure to another renowned pre-trained model, ResNet152V2, in the 

same image classification task. The performance of the ResNet152V2 model was 

robust and achieved a notable accuracy. Precisely, during the evaluation stage, the 

ResNet152V2 model reached an accuracy of 73.07% on the validation set. This result 

highlights the strong performance and the model's capability to effectively generalize 

in this specific image classification context. 
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Figure 18: shows the model summary of the pretrained model Resnet152v2 

E. Comparison of Performance 

Diabetic retinopathy diagnosis has been significantly enhanced using advanced 

methodologies such as deep learning, machine learning, and image processing 

algorithms. To optimize the clarity of images, we employed image processing and 

augmentation techniques that notably improved their brightness and contrast. For a 

comparative analysis of performance across different methods, accuracies were 

systematically tabulated. Notably, leveraging transfer learning techniques with deep 

learning classifiers yielded superior accuracy, especially for datasets with fewer 

records. A comparative analysis with existing research findings is detailed in Table. 

Table 2: Comparison between all the used methods 

Method Validation Accuracy Validation Loss 

CNN 78.01% 0.4358% 

Xception 74.52% 0.5381% 

   

ResNet152V2 73.07% 0.2249% 
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In conclusion, our developed model demonstrated promising performance with 

accuracy of 78%, achieving a respectable accuracy in classifying the severity of 

retinopathy in the APTOS 2019 Blindness Detection dataset. Future work may include 

tuning the model to mitigate overfitting, enhancing its generalizability, and potentially 

improving the model's performance further. 
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V. CONCLUSION 

One of the illnesses with the fastest recent growth rates is diabetes. A patient 

with diabetes has a 30% chance of developing diabetic retinopathy, according to 

several surveys. There are several phases of DR, from moderate to severe, and PDR 

(Proliferative Diabetic Retinopathy) is the last stage. If the condition is not discovered 

in the earlier stages, it progresses to blindness, floaters, and impaired vision in its later 

stages. There is still a need for simple access to such models despite the fact that 

several computer vision-based strategies for the automatic identification of DR 

employing hands-on engineering and end-to-end learning approaches have been 

offered. 

In this regard, the study described in this paper suggests a novel method for 

early DR detection based on a Convolutional Neural Network (CNN) model based on 

Discrete Cosine Transform (DCT) that is specially designed for mobile devices. 

In developing this model, we utilized one publicly accessible Kaggle dataset for 

training and validating our CNN-based DCT network. We found that image pre-

processing is an essential step in this process. 

Our results indicate that the CNN-based DCT model successfully classifies the 

early stages of DR. This aligns with our central aim of encouraging early detection 

before the progression to more advanced stages such as PDR. However, it's important 

to note that the model does encounter some difficulty in classifying the final stages of 

DR. 

Early DR stages are notoriously difficult to classify, as confirmed by related 

work in the field. However, our proposed CNN-based DCT model exhibits 

encouraging results for early stage classification. It particularly excels at 

distinguishing Non_DR from the mild to moderate stages, thanks to the pre-processing 

technique employed. 

Nonetheless, our study did uncover a limitation in the model's performance 

when it came to classifying the last two stages of the disease. We believe this could be 

due to the fact that the characteristic features of DR's later stages do not replace the 

earlier stages' features but rather augment them. This means that features from the 
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earlier stages still exist in the later stages, complicating their differentiation. The 

model's performance for these advanced phases will be improved in the future. 
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