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DISCRETE-TIME ADAPTIVE IDA-PBC CONTROL FOR DC-DC BOOST 
CONVERTOR WITH UNCERTAIN CONSTANT POWER LOAD 

 

ABSTRACT 

In this study, the problem of the output voltage regulation of the dc-dc boost 

converter considering unknown constant power load is addressed. The dc-dc boost 

converter with uncertainty in the power load is formulated in discrete-time setting in 

the structure of port-controlled Hamiltonian system based on the average dynamics of 

the power converters. An adaptive discrete-time interconnection and damping 

assignment passivity-based controller (IDA-PBC) for the considered uncertain dc-dc 

boost converter is presented. Besides, the technique method of the immersion and 

invariance (I&I) is used to design the estimator of the unknown power load in discrete-

time setting by guaranteeing asymptotic stability of the estimator using Lyapunov 

theory providing an automatic update for the IDA-PBC controller. The proposed 

adaptive IDA-PBC controller is applied to the dc-dc boost converter and the 

converter’s performance is tested by MATLAB/SIMULINK. The simulation results 

illustrate that the proposed adaptive controller successfully preserves the stability, 

effectiveness, and robustness of the system under large-scale variations in the constant 

power load. 

Keywords: boost converter, IDA-PBC, immersion and invariance (I&I), port-

controlled Hamiltonian system, Adaptive Control 
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BELİRSİZ SABİT GÜÇ YÜKÜ ILE DC-DC BOOST DÖNÜŞTÜRÜCÜ IÇIN 

AYRIK ZAMANLI UYARLANABILIR IDA-PBC KONTROLÜ 

 

ÖZET 

Bu Tezde, bilinmeyen sabit güç yükü dikkate alınarak DC-DC boost 

dönüştürücünün çıkış voltajı regülasyonu sorunu ele alınmıştır. Güç yükünde 

belirsizliğe sahip dc-dc boost dönüştürücü, güç dönüştürücülerinin ortalama 

dinamiklerine dayalı olarak port kontrollü Hamilton sisteminin yapısında ayrık zaman 

ayarında formüle edilmiştir. Belirsiz olduğu düşünülen dc-dc boost dönüştürücü için 

uyarlanabilir ayrık zamanlı ara bağlantı ve sönümleme ataması pasiflik tabanlı 

denetleyici (IDA-PBC) sunulmuştur. Ayrıca, teknik daldırma ve değişmezlik yöntemi 

(I & I), IDA-PBC denetleyicisi için otomatik bir güncelleme sağlayan Lyapunov 

teorisini kullanarak tahmincinin asimptotik stabilitesini garanti ederek, bilinmeyen güç 

yükünün tahmincisini ayrık zaman ayarında tasarlamak için kullanılır. Önerilen 

uyarlanabilir IDA-PBC denetleyicisi dc-dc boost dönüştürücüye uygulanır ve 

dönüştürücünün performansı MATLAB / SİMUL INK tarafından test edilir. 

Simülasyon sonuçları, önerilen uyarlanabilir denetleyicinin, sabit güç yükündeki 

büyük ölçekli değişiklikler altında sistemin kararlılığını, etkinliğini ve sağlamlığını 

başarıyla koruduğunu göstermektedir.  

Anahtar Kelimeler: boost dönüştürücü, IDA-PBC, daldırma ve değişmezlik (I&I), 

port kontrollü Hamilton sistemi, Adaptif Kontrol 
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I. INTRODUCTION 

With both energy demand and energy supply on the rise, more and more people 

are starting to take an interest in renewable energy (H. Kikigano, 2010). A great deal 

of distributed renewable energy resources, like solar photovoltaic (PV) systems and 

wind turbines, have been added to utility power grids in recent years. Power quality in 

utility grids may be impacted, however, if many distributed generation units are 

integrated. Microgrids can be built to integrate controller in a specific area, managed 

centrally within the microgrid, and connected to the utility grid in a way that meets 

power quality standards at the microgrid's point of connection. Microgrids can be split 

into two distinct types: those that use alternating current and those that use direct 

current. Most microgrids use alternating current (ac) distribution, the same technology 

used by traditional power companies (Zeng ,2013). Specifically, inverters link dc 

power sources like PV systems, fuel cells, and energy storage systems to the 

microgrids. To lessen energy waste during the conversion from dc sources to dc loads, 

DC microgrids have been proposed and studied. Dc microgrids are feasible because of 

the rise in popularity of low-power electronic devices and the possibility of employing 

light-emitting diodes to cut down on lighting loads (K. Doran and P. Pasrich, 2010). 

When a dc microgrid with constant power loads (CPLs) operates in the island mode, 

the technical challenges associated with its operation and control are particularly 

significant. DC microgrids typically use dc-dc boost converters to connect DC sources 

to the grid (C. lai and Cheng ,2012). It is well known that when using traditional linear 

controllers, the dc-bus voltage may oscillate or become unstable due to the negative 

incremental impedance property of a CPL. Many studies have focused on perfecting 

nonlinear control methods for converters that use CPLs. Examples of such controllers 

include the sliding mode controller for buck converters, the hybrid model predictive 

control for boost converters, and the passivity-based controller (PBC) for buck, boost, 

and buck-boost converters with CPLs. Compared to other nonlinear control methods, 
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PBC takes advantage of the structural properties of physical systems (K. Doran and P. 

Pasrich, 2010) to arrive at a control law that can be implemented with relative ease. 

Stability analysis of a dc microgrid has been performed using the PBC in conjunction 

with the interconnection and damping assignment (IDA) method. However, after being 

designed for a typical operating condition—such as a fixed power level of the CPL 

and a fixed voltage on the dc-bus—the IDA parameters were typically determined 

through simulations and locked in. The values of system state variables typically 

fluctuate over time in practical applications. As a result, when the operating condition 

of the system shifts, the IDA's optimal performance will suffer if its parameters remain 

constant. In addition, the PBC needs accurate values for the state variables in order to 

maintain the system at a predetermined operating point. However, a discrepancy 

between the actual and desired operating points may occur when employing a PBC 

due to estimation or measurement errors of the state variables (Zang and Qiao, 2013). 

In thesis, the idea we suggest is a novel adaptive IDA-PBC for a CPL-equipped dc-dc 

boost converter. An IDA-based virtual circuit is derived from the port-controlled 

Hamiltonian system (PCHS) to design the controller's parameters. The virtual circuit 

analysis can be used to determine the optimal values for the controller parameters, 

allowing for the dc-dc boost converter with a CPL to operate in one of three modes: 

underdamping, critical-damping, or overdamping. Moreover, due to its highly 

nonlinear properties, the dc-dc boost converter makes it difficult to design a control 

algorithm that is robust against load variations. This study presents a complementary 

controller that, when used in conjunction with the IDA-PBC, can correct the steady-

state error in the output voltage brought on by changes in the load. 

In chapter 3, IDA-PBC with I&I is explained with relevant figures and graph to 

further explain the working of whole system. 
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II. LITERATURE REVIEW 

In this section I have mentioned the research which had already happened by 

various researchers in field of port controllers: 

Every day, significant concerns and efforts are directed toward the development of 

high-performance control systems that are modeled using the Hamiltonian structure. 

This is particularly the case for multivariable electromechanical systems.  

Modern modeling and control techniques have made use of the port-Hamiltonian 

system. The emphasis is on the flow of energy within and between systems. Power 

converters, on the other hand, are gadgets that take in electrical energy and transform 

it so that its output has the desired quality. For this reason, a Port-Hamiltonian model 

lends itself well to the regulation of power converters. In the paper written by (David 

NAVARRO, Domingo CORTES)  they build on previous work by proposing a Port-

Hamiltonian method for controlling DC-DC power converters. The proposed 

controller uses a time-varying inductor current, which is one of its distinguishing 

features. This allows for a closed-loop response that is both quicker and less prone to 

overshoot during start-up and load disturbances.  

The paper by (N.M. Trang Vu and L.Lefevre )  explores the connections between 

Linear Quadratic (LQ) optimal control and Interconnection and Damping Assignment- 

Passivity Based Control (IDA-PBC) design. The impact of a specific optimal control 

on the closed-loop system's architecture is studied first, and then the feasibility of using 

an optimal criterion to direct the development of IDA-PBC parameters is explored. 

While additional options could be considered, this work explores the case of a trivial 
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relation between the optimal control gain and the desired total power in the IDA-PBC 

design. Utilizing a linearized pendulum, the method is successfully demonstrated. The 

paper emphasized the similarity between IDA-PBC and linear quadratic optimal 

control. This equality allows us to understand the significance of the optimal control 

gain and its effect on the design parameters of the closed-loop system. On the other 

hand, this similarity could serve as a principle for deciding upon IDA-closed-loop 

PBC's parameters. This theory has been successfully implemented in a working model 

of a linearized pendulum system. 

Nonlinear system analysis, specifically as it pertains to the port-controlled 

Hamiltonian system, is widely regarded as a top research priority. The problem of 

stabilization continues to play an important part in a variety of studies. In this way, we 

are going to mention some studies like the ones that are listed below. In another 

research have constructed appropriate stability testimonies in order to examine the 

non-linear time-delay systems that are modeled in PCH structures in order to determine 

whether or not these systems are stable in Kao and Pasumarthy (2012). A rule for the 

output feedback stabilization of a class of non-holonomic systems in the PCH model 

was proposed by Sakai and Fujimoto (2014). The underlying principle of the rule was 

the similarity between the asymptotic stability of a state feedback system and the 

corresponding output feedback system. As part of their proposal for the design of a 

simultaneous controller for the PCH, the researchers in that study looked into the 

possibility of simultaneously stabilizing a collocation of PCH systems. An augmented 

PCH system is produced because of the collection of PCH systems being combined 

through the utilization of the dissipative properties of the Hamiltonian form. According 

to paper (Xi, 2002), 

They investigated the stability of a group of constrained Hamiltonian systems as 

well as the control design for those systems. Some stability criteria are derived by 

starting with the structural properties of Hamiltonian systems and working backward 

from there. In addition, the authors talked about feedback stabilization and made an 

H-infinity control law for Hamiltonian systems with constraints. In order to stabilize 

two multi-input PCH systems at the same time, in parallel, with actuator saturation, 
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they came up with a brand-new method that they called the energy-based method by 

(Airong and Yuzhen, 2008) . 

The stabilization problem of time-varying PCH systems with input-delay was 

studied in a paper proposed by (Su and Fu, 2014). The paper proposes a feedback 

controller using energy shaping and the Lyapunov-Krasovskii theorem to guarantee 

the asymptotic stability of the closed-loop of time-varying PCH with input delay. 

When it comes to passivation, (Ortega and Spong ,1989) are the ones who first 

introduced Passivity Based Control (PBC), which is widely regarded as a potent 

stabilization control design method. So, in this approach, the stabilizable controller 

makes use of a storage function that has a minimum at the target equilibrium points. 

Additionally, a second condition for ensuring asymptotic stability is that the passive 

output be detectable (Ortega and Spong, 1989). For physical systems modeled by the 

Euler-Lagrange (EL) motion equations, the Passivity Based Control (PBC) method 

provides a potent strategy for robust controller design (Xi, 2002). In addition, for 

mechanical system regulation problems where the potential energy can only be shaped 

(or stabilized), the Passivity Based Controller (PBC) method maintains the structure 

of Euler-Lagrange (EL). The closed-loop energy function is thus set to be the 

controller's energy function minus the system's energy function. If the authors are 

correct, then achieving stability requires first balancing the energy flows. The EL-

PBC, on the other hand, loses its attractive properties when used in contexts where the 

shaping of total energy is required, such as the electrical, electromechanical, or some 

underactuated systems. To address the stabilization issues of the aforementioned 

energy-balancing mechanism and to guarantee the invariance of the structure, a new 

PBC theory tool called "Interconnection and Damping Assignment (IDA-PBC)" is 

developed (Ortega et al, 2013). To this end, they looked at the Port-Controlled 

Hamiltonian (PCH) models produced by simulations of energy-efficient physical 

systems with lumped parameters and discrete storage elements, rather than the Euler-

Lagrange (EL) structure form. They are complete representations of the EL class 

model. In IDA-PBC, the storage function to be assigned comes first, and the controller 

that guarantees the storage function assignment is designed while still allowing the 

storage function to remain non-increasing. 



 

6 

When selecting the appropriate energy function, interconnection, and damping 

structure matrices, the IDA-PBC method's closed-loop energy function is calculated 

by solving the resulting partial differential equations (PDE)(Ortega et al, 

2002).Unfortunately, it is not a simple problem to solve PDEs by finding their 

solutions. In particular, in the IDA-PBC method, solvable PDEs are obtained by 

parameterizing the PDEs in terms of interconnection and damping matrices that can 

be selected wisely with respect to physical concerns (Ortega et al, 2013; Ortega et al , 

2002). But the IDA-PBC approach is still considered "universally stabilizing" because 

it gives all the asymptotically stabilizing controllers for the PCH systems, even though 

the IDA-PBC approach method requires that explicit conditions exist for the solution 

of these PDEs. The challenge of determining such a feedback control rule has been 

investigated (Fujimoto, 2001). 

Mechanical systems' kinetic energy can be altered in the IDA-PBC method by 

choosing an appropriate desired interconnection matrix. For example, in (Ortega et al, 

2002) they applied this benefit to the inverted pendulum system with an inertia disk 

and the ball and beam system for global stabilization. In addition, some links to the 

controlled-Lagrange controller discussed in (Block et al , 2000). 

Repeatedly in the controller design, In research mentioned in (Yalçın and Sümer, 

2010) they have relied on the discrete-time Hamiltonian system model. For mechanical 

systems where the desired closed-loop continuous-time model of the aforementioned 

system is known, the study directly derives the discrete-time version of the IDA-PBC 

controller, in this case the energy-shaping and damping injection controller terms of 

the PBC. The effectiveness of the proposed controller was demonstrated through 

simulation on two examples, one of which was a non-separable Hamiltonian system 

and the other was an underactuated Hamiltonian system. In contrast to emulating the 

continuous time version of the controller, which could lead to system instability, the 

authors have demonstrated that the direct discrete-time version of the controller for the 

sampled PCH yields good performance. 

However, a new instrument for nonlinear stabilizing control and adaptive control 

has been presented by (Astolfi and Ortega, 2003) . The design problem of the 
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stabilization and adaptive control rules was broken down into smaller, more 

manageable subproblems using system immersion and manifold invariance, two 

classical tools of geometric nonlinear control and nonlinear regulator theory for 

general nonlinear systems. The term "immersion and invariance" (I&I) describes this 

strategy. And in particular, the stabilization and adaptive control of I&I. In cases where 

the desired dynamics are of a reduced order, I&I is a viable strategy. For situations 

where classical adaptive control has its limits, like when one is working with a 

nonlinearly parameterized system, this alternative method is also investigated. Many 

different types of physical systems, including energy systems, electrical systems, and 

mechanical systems, are used to demonstrate the efficacy of the Immersion and 

Invariance I&I method. But in new method they have introduced the I&I method for 

stabilization of the nonlinear systems, and this method is further developed by several 

studies and researches where they have summarized these publications (Astolfi and 

Ortega , 2007). 

However, IDA-significance PBC's as a stabilizable controller in a number of 

application examples is comparable to that of the I&I approach in the field of control 

theory. More recent efforts have been made to find sets of design parameters that are 

suitable for the assigned dynamics. Both the well-known I&I and IDA-PBC 

approaches require the solution of some partial differential equations (PDEs) that 

determine the controller laws in similar structural contexts. In contrast to the IDA-PBC 

design approach, I&I design procedures allow a lower-dimensional target system to be 

tracked as a port-controlled Hamiltonian system in a pre-specified manifold. This is 

especially useful for mechanical systems and suggests that the I&I approach may be 

seen as a more relaxed version of the IDA-PBC approach (Kotyczka and Sarras, 2012). 

Besides the adaptive control of port-controlled Hamiltonian systems, researchers 

have also introduced a different type of stabilization method called the Casimir 

method. Through energy-shaping, a generalization of the Casimir method for 

Hamiltonian systems, they have explored the stabilization and adaptive stabilization 

issues of time-varying PCH (Guo and Cheng, 2006). When dealing with parameter 

perturbations in port-controlled Hamiltonian systems (PCH), similarly according to 

(Dirksz and Scherpen, 2010), they propose using an adaptive controller in conjunction 
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with canonical transformation theory. This integration with the adaptive controller 

expands the PCH framework's applicability to a plethora of port-controlled 

Hamiltonian systems. Under external disturbances and parameter uncertainties, (Sun 

and Wang, 2013) propose an adaptive feedback framework that guarantees asymptotic 

stability and the L2 disturbance attenuation for the closed-loop system of a class of 

time-delay PCH, where the criteria for the delay time are dependent on the asymptotic 

stability. Statistical analysis of simulation results validated the effectiveness of the 

proposed method in (Dirksz and Scherpen, 2010). Parametric uncertainties of the same 

class of time-delay nonlinear PCH which are studied here, but this time the adaptive 

H controller is used as mentioned in (Wang et al ,2014). The proposed method obtains 

necessary conditions for designing an adaptive controller that ensures the closed-loop 

system's asymptotic stability and the attenuation of L2 disturbances. 

Since an I&I based adaptive IDA-PBC control for a port-controlled Hamiltonian 

system is not yet explored in the literature, we aim to do so in this study by combining 

the IDA-PBC control with this method. Let's look at some adaptive research for 

nonlinear systems in general that is based on I&I. 

The I&I adaptive controller, in contrast to the vast majority of proposed adaptive 

controllers in the literature, does not rely on the cancellation of the terms in the 

Lyapunov function derivative. It is the goal of these frameworks, known as the 

classical adaptive control methods, that rely on the cancellation of the terms, to reduce 

the impact of disturbances by enforcing matching conditions that restrict or limit the 

scope of the disturbances. On the other hand, the I&I adaptive controller's use of the 

robustness perspective can lessen the bad effects of the uncertain parameters. (i.e., by 

generating cascaded structures). As many examples have shown, adding a proportional 

term to the integral action of the parameter estimator in the control law can add extra 

zero dynamics that make the design more stable (Ortega et al , 2013). Several studies 

established I&I parameter estimators like those mentioned above to apply the I&I 

methodology in the design of adaptive controllers (Liu et al, 2010). 
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III. PRELIMINARIES  

A. Introduction 

This chapter provides and restates some important preliminary findings that are 

used to construct the main findings of this study. Moreover, continuous time adaptive 

control system is also mentioned with its equations. 

B. Boost Converter  

 One type of DC-to-DC power converter is the boost converter, also known as a 

step-up converter or simply a "step-up converter." This type of converter increases 

voltage at the output but decreases current at the input (load). This type of switched-

mode power supply (SMPS) includes a diode and a transistor in addition to a capacitor, 

an inductor, or both as energy storage components. Capacitor (and inductor) filters are 

typically added to the converter's output (load-side filter) and input (source-side filter) 

to smooth out the voltage (supply-side filter). 

Batteries, solar panels, rectifiers, and DC generators are all viable options for 

supplying DC current to the boost converter. DC-to-DC conversion refers to the 

process of transforming one direct current (DC) voltage to another DC voltage. A boost 

converter is a type of direct current to direct current converter whose output voltage is 

higher than its input. Since it increases the voltage from the source, a boost converter 

is also known as a step-up converter. Therefore, the output current is less than the input 

current due to the conservation of power (P=VI) (Sharma et al, 2016). 
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When the current through an inductor is altered, the inductor's magnetic field 

either strengthens or weakens, and this property is the primary force behind the boost 

converter's operation. The output voltage of a boost converter is always greater than 

the input voltage. Figure 3.1 is a schematic representation of a boost power stage. 

Figure 3.1 Schematic of boost convertor 

      

i) If the switch is in its closed (on) position, current will flow clockwise through 

the inductor, creating a magnetic field that will store energy. The inductor's 

positive polarity is on its left side. 

ii) In the off position (high impedance), less current flows through the switch. In 

order to keep the current going to the load, the magnetic field will lose some 

of its energy. This means the polarity will be switched (meaning the left side 

of the inductor will become negative). Therefore, the capacitor will be charged 

via diode D at a higher voltage due to the series connection of two sources. 

If the switch is cycled rapidly enough, the inductor won't have enough time to 

fully discharge between charging stages, so the load will always see a higher voltage 

than the input source alone when the switch is opened. Parallel to the load, a capacitor 

is charged to this total voltage while the switch is open. The capacitor stores voltage 

 

Figure 3.2  Depending on the position 

of the switch device, a boost converter 
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and energy until the switch is closed, at which point the right side is shorted out from 

the left, allowing the capacitor to supply the load. While this is happening, the 

capacitor is kept from discharging through the switch thanks to the blocking diode. A 

fast enough reopening of the switch is required to avoid excessive discharge of the 

capacitor. 

If the switch is cycled rapidly enough, the inductor won't have enough time to 

fully discharge between charging stages, so the load will always see a higher voltage 

than the input source alone when the switch is opened. Parallel to the load, a capacitor 

is charged to this total voltage while the switch is open. The capacitor stores voltage 

and energy until the switch is closed, at which point the right side is shorted out from 

the left, allowing the capacitor to supply the load. While this is happening, the 

capacitor is kept from discharging through the switch thanks to the blocking diode. A 

fast enough reopening of the switch is required to avoid excessive discharge of the 

capacitor. 

C. Discrete-Time Settings 

To be more specific, a discrete-time signal is a list of numbers that represent 

specific timestamps. The signal's samples are the values associated with the time 

instants at which the signal is defined. 

Discrete time treats time itself as a discrete variable, with values of variables 

being viewed as occurring at discrete, separate "points in time" or, equivalently, as 

remaining constant throughout each non-zero region of time ("time period"). Thus, as 

one period of time ends and another begins, the value of a variable that is not time-

related abruptly changes. This interpretation of time is analogous to a digital clock that 

displays 10:37 for a short period of time before skipping to 10:38, etc. Each dependent 

variable is counted only once per time period. It is possible to take only a finite number 

of measurements between any two given times. Commonly, measurements are taken 

at even-numbered times in a row. 

Quantitative events over time can be represented by "discrete" or "discrete time" 

signals. A discrete-time signal is not a function of a continuous argument, but it may 

have been derived from a continuous-time signal through sampling. A sampling rate 
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is associated with a discrete-time signal whenever that signal is obtained by repeatedly 

taking samples from a sequence at regular intervals. Although there are a few possible 

categories to place discrete-time signals into, they all fall into one of two broad 

categories (Zlatanov,2016). 

i) This is done by continuously or intermittently grabbing readings from an 

analog input. Samplin is the name for this procedure. 

ii) The weekly peak value of a specific economic indicator is a good example of 

a process that is discrete by its very nature and can be observed in this way. 

D. Adaptive control 

When the parameters of the system being controlled change over time or are 

initially unknown, the controller must employ a method of control known as "adaptive 

control." During flight, for instance, an airplane loses mass due to fuel consumption, 

so it requires a control law that can adjust to these variables. Whereas robust control 

guarantees that the control law need not be changed if the changes are within given 

bounds, adaptive control is concerned with the control law changing itself, which 

requires no a priori information about the bounds on these uncertain or time-varying 

parameters (Chengyu and Yunjun,2012). 

Parameter estimation, a subfield of system identification, forms the backbone of 

adaptive control. Recursive least squares and gradient descent are two common 

estimation techniques. Real-time adjustments to estimates can be made using both of 

these methods, thanks to the update laws they provide (i.e., as the system operates). 

These update laws and convergence criteria are derived using Lyapunov stability 

(typically persistent excitation; relaxation of this condition are studied in Concurrent 

Learning adaptive control). It is common practice to employ projection and 

normalization in order to make estimation algorithms more bulletproof. 

E. Hamiltonian System 

The origins of the Hamiltonian approach can be traced back to analytical 

mechanics, where it was developed from the principle of least action and ultimately 

led to the Hamiltonian equations of motion via the Euler-Lagrange equations and the 

Legendre transform. Conversely, the network approach is a central tenet of 
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mathematical systems theory and has its origins in electrical engineering. The network 

perspective is currently dominating the modeling and simulation of (complex) physical 

engineering systems, while the majority of past analysis of physical systems has been 

conducted within a Lagrangian and Hamiltonian framework. Both perspectives are 

brought together in the framework of port-Hamiltonian systems by associating the 

geometric structure given by a (pseudo-) Poisson structure or, more generally, a Dirac 

structure with the interconnection structure of the network model. In addition, port-

Hamiltonian systems are open dynamical systems that communicate with their 

external environment via ports (Van Der Schaft, 2014).  

1. Classical Equation of Port- Hamiltonian System: These are the standard 

Hamiltonian equations for a mechanical system which we discussed are 

from [34]: 

�̇� =  
𝜕𝐻(𝑞, 𝑝)

𝜕𝑝

̇
          

(3.1a) 

�̇� = −
𝜕 𝐻(𝑞, 𝑝)

𝑑𝑞
+ 𝐹 

̇
 

(3.1b) 

              

where the Hamiltonian 𝐻(𝑞, 𝑝) represents the system's total energy, 𝑞 =

(𝑞 , … . . 𝑞 )  are the generalized configuration coordinates for a mechanical system 

with k degrees of freedom, p = 0, and q = 1. 𝑝 = (𝑝 , … . . 𝑝 )  is the vector of 

generalized momenta, while F is the vector of generalized external forces. Phase space 

is the state space of (3.1) with local coordinates (𝑞, 𝑝). 

Immediately, the following energy balance can be derived as in (Van Der Schaft, 

2014): 

𝑑𝐻

𝑑𝑡
=

𝜕

𝜕𝑞
(𝑞, 𝑝)�̇� +

𝜕

𝜕𝑝
(𝑞, 𝑝)�̇� =

𝜕

𝜕𝑝
(𝑞, 𝑝)𝐹 = 𝑞 𝐹̇  

 

(3.2) 

expressing that the increase in system energy is equal to the amount of work 

supplied (conservation of energy). This motivates defining the system's output as 𝑒 =

�̇�. (The vector of generalized velocities) 
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equation (3.1) is typically presented in the following format : 

�̇� =  
𝜕𝐻(𝑞, 𝑝)

𝜕𝑝
,

̇
  (𝑞, 𝑝) = 𝑞 , … … 𝑞 ,𝑝 , … . . 𝑝 ,      

 

(3.3) 

 

�̇� = −
𝜕 𝐻(𝑞, 𝑝)

𝑑𝑞
+ 𝐵(𝑞)𝑓,           𝑓 ∈ 𝑅 ,

̇
 

(3.4) 

 

𝑒 = 𝐵 (𝑞)
𝜕𝐻

𝜕𝑝
(𝑞, 𝑝)   (= 𝐵(𝑞)(�̇�)),       𝑒 ∈ 𝑅 ,   

 

(3.5) 

    

with 𝐵(𝑞)𝑓 representing the forces that result from the input 𝑓 ∈ 𝑅 . In case 

𝑚 < 𝑘, we refer to a system as being underactuated. Similarly, to (3.2), the energy 

balance is obtained as mentioned in (Van Der Schaft, 2014). 

 

𝑑𝐻

𝑑𝑡
𝑞(𝑡), 𝑝(𝑡) = 𝑒 (𝑡)𝑓(𝑡), 

 

 

(3.6) 

A further generalization is to consider local-coordinate-described systems as in : 

 

�̇� = 𝐽(𝑥)
𝑑𝐻

𝑑𝑥
(𝑥) + 𝑔(𝑥)𝑓,      𝑥 ∈ 𝜲, 𝑓 ∈ 𝑅 ,  

 

(3.7) 

 

𝑒 = 𝑔 (𝑥)
𝑑𝐻

𝑑𝑥
(𝑥)          𝑒 ∈ 𝑅 , 

 

(3.8) 
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whereas 𝐽(𝑥) is a 𝑛𝑥𝑛  matrix with entries that depends on (𝑥) and is assumed 

to be skew-symmetric, so 𝐽(𝑥) =  −𝐽 (𝑥), and 𝑥 = (𝑥 , … . . 𝑥 )  are local coordinates 

for an 𝑛-dimensional state space manifold 𝛸 . (Not necessarily even dimensional as 

above). Energy balance (𝑥(𝑡)) = 𝑒 (𝑡)𝑓(𝑡)   can be easily reconstructed thanks to 

the skew symmetry of 𝐽. Given the structure matrix 𝐽(𝑥) , the input matrix 𝑔(𝑥) , and 

the Hamiltonian 𝐻, refer to (3.8) as a port-Hamiltonian system. 

In such cases, we can determine "canonical coordinates" using Darboux's 

theorem because the structure matrix 𝐽 also satisfies an integrability condition (the 

Jacobi-identity). To be more precise, according to (Van Der Schaft, 2014), 𝐽 is the 

structure matrix of a Poisson distribution on 𝜲 . 

2. Networking of Hamiltonian system by port- based technique:  

In this section, a general structure of how port-Hamiltonian systems emerge 

directly from port-based network models of physical systems, adopting a different 

perspective is shown in figure below as in (Van Der Schaft, 2014). 

 

Figure 3.3 General LC circuit 

Network models of complex physical systems typically view the system as the 

interconnection of energy-storing elements via basic interconnection (balance) laws 

like Newton's third law or Kirchhoff's laws; power-conserving elements like 

transformers, kinematic pairs, and ideal constraints; and energy-dissipating elements 

.Port-Hamiltonian systems theory begins with defining the Hamiltonian as the total 

energy stored in the system and formalizing the basic interconnection laws alongside 

the power-conserving elements by a geometric structure. The following elementary 

case already exemplifies . 
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3. The Hamiltonian systems with inputs, states, and outputs: 

When the flow and effort variables of the resistive, control, and interaction ports 

are decomposed into conjugated input-output pairs, we have a special case of port-

Hamiltonian systems known as input-state-output port-Hamiltonian systems, in which 

the variables in the state space are not constrained by algebra. PCH systems, also 

known as port-controlled Hamiltonian systems, are a generalization of Hamiltonian 

systems that can be expressed as (Van Der Schaft, 2014; Pang S et al , 2018): 

�̇� = [𝐽(𝑥) − 𝑅(𝑥)]
𝜕𝐻

𝜕𝑥
+ 𝑔(𝑥)𝑢 

(3.9a) 

𝑦 = 𝑔 (𝑥)
𝜕𝐻

𝜕𝑥
(𝑥) 

(3.9b) 

 

𝐽(𝑥) is a 𝑛 𝑥 𝑛 matrix whose entries depend smoothly on 𝑥 and whose skew-

symmetry is assumed (Pang S et al , 2018): 

𝐽(𝑥) = −𝐽 (𝑢)                     (3.10) 

 

 

𝑅(𝑥)  =  𝑅 (𝑥) 0 represents the system's dissipation. Due to the 𝑅 matrix, the 

form of PCH system described above is sometimes referred to as PCH with dissipation. 

If 𝑅 =  0 (i.e., there is no dissipation), then the skew-symmetric nature of 𝐽 permits 

us to recover the energy-balance relation 𝐻 =  𝑢  (𝑡)𝑦(𝑡) by demonstrating that the 

system (3.9) is lossless if 𝐻 ≥ 0 and 𝑅 =  0. 

Physical system network models that treat the system as an interconnection of 

energy-storing elements inevitably lead to port-controlled Hamiltonian realizations. 

Passivity-based controls can be built on the basis of the physical properties of this type 

of system, which occurs in biological, chemical, electrical, and mechanical systems. 

Several examples can be used to demonstrate the variety of possible contexts. 

If we assume about an LC-circuit that has a controller. Then according to [35] 

consisting of two inductors, with magnetic energies 𝐻 (∅ ) and 𝐻 (∅ ), and links ∅  

and ∅  in the magnetic flux. Plus, an electrical capacitor storing 𝐻 (𝑄) (Q being the 

charge). Assuming a linear relationship between the elements 𝐻 (∅ ) = ∅ , 
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𝐻 (∅ ) = ∅ , and 𝐻 (∅ ) = 𝑄 , Consider a voltage source to be denoted by 𝑢. 

The following equations for the state variables are obtained by applying Kirchoff's 

laws ( Pang S et al , 2018):  

�̇�

∅̇

∅̇

=
0 1 −1

−1 0 0
1 0 0

⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝜕𝐻

𝜕𝑄
𝜕𝐻

𝜕∅
𝜕𝐻

𝜕∅ ⎦
⎥
⎥
⎥
⎥
⎥
⎤

+
0
1
0

𝑢 

(3.11) 

And  

𝑦 =
𝜕𝐻

𝜕∅
 

(3.12) 

Equation (3.12) represents inductor current. 𝐻 (∅ ) + 𝐻 (∅ ) + 𝐻 (𝑄) =

𝐻(∅ , ∅ , 𝑄) meaning the sum of all potential energy in the circuit and  𝐽 =

0 1 −1
−1 0 0
1 0 0

 is skew-symmetric matric which relies on the connections between its 

components for its structure, allowing any circuit to be written as a port-controlled 

Hamiltonian system. 

4. Control through the interconnection of port Hamiltonian systems: 

  The fundamental feature of port-Hamiltonian systems is that any number of 

such systems can be connected in a power-efficient manner, yielding yet another port-

Hamiltonian system. 

In this study, we introduce a PBC method for the dc on-board distribution system 

based on interconnection and damping assignment (IDA). In this study of thesis, a 

boost converter and with adaptive control technique are implemented and studied to 

provide for the wide range of electrical loads. IDA-PBC does not separate the control 

strategy into outer-loop and inner-loop like other control methods do. Because of this, 

a more effective control strategy can be used to maintain the system's steadiness. The 

control law is imperfect because it is derived from a subset of the PCH model's 

equations. All equations are satisfied, and the passivity proof is complete when the 
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PCH form is used in the dc-dc converter system, which considers the total energy in 

the energy function. As a result, the control law the equations in the closed-loop system 

and incorporate all of that information. It is of great interest to learn how to connect 

all the equations and determine the unique control law. The PCH structure's control 

law also depends on the interconnection and damping matrices we select. The 

interconnection matrix has a relatively open structure, and the damping matrix should 

always be positive. As a result, the interconnection matrix is a promising option for 

constructing the PCH system's internal links. In order to complete this task, an adaptive 

interconnection matrix is created in this paper. Tuning the dynamic property is also 

addressed by addressing the virtual damping assignment technique. 

F. Passivity Based Control 

Synthesizing stabilizing controllers using passivity-based control (PBC) is a 

common practice. The following characteristics of passive systems contribute to the 

method's widespread acceptance: 

i. The passivity of many different kinds of systems (especially mechanical 

systems) is guaranteed by an energy conservation principle that is satisfied by 

the energy function. As a first step in the design of stable passivating controls, 

selecting a storage function that makes sense for these systems is essential. 

ii. As long as the passivated system satisfies a detectability condition, 

stabilization of the origin is straightforward via output feedback in passive 

systems. 

iii. If two passive systems are connected via a feedback mechanism, then both 

systems will remain passive, as proven by the passivity theorem. This offers 

some degree of robustness to unmodeled passive dynamics while providing a 

modular approach to building large-scale passive networked systems. 

Despite its advantages, passive control has had to overcome a number of 

obstacles in its early stages. When it came to feedback passivation, initially only 

degree-one systems with negligible phase-zero dynamics were considered. 

Backstepping for strict feedback systems and forwarding for strict feedforward 

systems are examples of recursive design procedures that can be used to get around 
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these problems. Yet, in order to control the passive plant using any of these design 

methods, information about a suitable storage function is required. While the sum of 

kinetic and potential energy makes sense as a storage function for mechanical systems, 

it is less clear cut in electronic and biological systems. To overcome this obstacle, 

researchers have zeroed in on Hamiltonian structures in their systems of interest. This 

interest in passivity-based control is further justified by the fact that it has been used 

to model a number of interesting and important applications. 

To a large extent, the passive property of many physical systems can be 

understood in terms of the dissipation and transformation of energy. The ability to 

quantify and qualify the energy balance of a system when stimulated by external inputs 

to generate some output is an inherent Input-Output property. So, passivity is related 

to the property of stability in an input-output way. That is, we say a system is stable if 

it has a limited "input energy" and a limited "output energy" as a result. In contrast, 

Lyapunov stability is concerned with a system's internal stability, or how "far" the 

current state is from an ideal one. To put it another way, the degree to which a system 

deviates from an ideal performance. 

By controlling a closed loop system so that it does not actively interact with its 

environment, we say that the system is passively controlled. Since this is still a 

developing area of study, we can only provide a high-level overview of the key ideas 

here. The Euler-Lagrange (EL) systems and their passivity-based control are also 

discussed, as are other passive physical systems. In order to grasp the passivity concept 

and PBC, we must abandon the idea of the state of a system and instead view it as a 

device that engages in mutually beneficial exchange with its surroundings by means 

of the transformation of inputs into outputs. Passive systems, from an energetic point 

of view, are those that cannot store more energy than is supplied by some "source," 

with the difference between the two being the dissipated energy. Negative feedback 

interconnection does not affect the passivity of a system, which is a fundamental 

property of passive systems. Simply put, a passive system is the result of the feedback 

connection between two passive systems. Therefore, the closed loop will be input-

output stable if the total energy balance is positive, meaning that the energy generated 
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by one subsystem is dissipated by the other. Passivity-based control relies on this 

characteristic (PBC). 

All of the passivity-based control strategies outlined above count on the 

existence of a priori knowledge of a storage function. Since there are multiple potential 

solutions, it is not always easy to determine this storage function from the 𝑥 =

 𝑓(𝑥)  +  𝑔(𝑥)𝑢 description of the system. The storage function, however, is often 

recognizable from energy considerations when we return to the physics behind the 

model. Passivity-based methods of control have this as one of their many advantages. 

With the help of first principle modeling information, PBC techniques can extract and 

then reshape the system's total energy. Methods for implementing energy concepts 

directly into passivity-based control are discussed further below. 

First, we'll imagine a system coupled to the outside world via port power 

variables 𝑢 𝑎𝑛𝑑 𝑦, the product of which has a power unit. 𝑢 𝑎𝑛𝑑 𝑦 stand for current 

and voltage, respectively, in electrical circuits. These port power variables are 

analogous to mechanical systems' force and velocity. Only systems that fulfill an 

energy balance relation are considered in chapter 10 of Passivity Based Control. 

𝐻(𝑥(𝑡)) − 𝐻 𝑥(0) = 𝑢 (𝑠)𝑦(𝑠)𝑑𝑠 − 𝑑(𝑡) 

 

(3.12) 

where 𝐻 is a function of the total energy and 𝑑(𝑡) is a dissipation term that is 

not negative. 

To solve this stabilization problem, we will choose the control action 𝑢 =  (𝑥)  +  𝑣 

and the output 𝑧 such that the reformulated system with the new input 𝑣 and output 

𝑧 satisfies a desired energy balancing equation of the form as in . 

𝐻 𝑥(𝑡) − 𝐻 𝑥(0) = 𝑣 (𝑠)𝑧(𝑠)𝑑𝑠 − 𝑑 (𝑡) 
(3.13) 

where 𝐻  is a target total energy function with a minimum at the target 

operating point 𝑥 and a dissipation rate of 𝑑 , where dd is the rate at which the target 

function converges to the target value 𝑑 (𝑡). Keep in mind that this tactic picks the 
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new control and output to reshape the energy function in a way that guarantees 

passivity, and so we can stabilize by picking the right feedback control 𝑣. 

Mechanical systems are an excellent example of a type of system for which 

this method is well suited. Allow us to assume that the energy function H of our 

unregulated system satisfies the dissipation relation given by equation (3.12). Allow 

me to assume that we can locate a function 𝛼(𝑥) such that in chapter 10 of Passivity 

Based Control.  

− 𝛼 𝑥(𝑠) 𝑦(𝑠)𝑑𝑠 = 𝐻 𝑥(𝑡) + 𝑘 
(3.14) 

for a purpose 𝐻 (𝑥) so that the desired energy function is satisfied. 

𝐻 (𝑥) = 𝐻(𝑥) + 𝐻 (𝑥) (3.15) 

at the point of optimal equilibrium 𝑥∗, Given the inert nature of this 

transformed nonlinear system, we can use a straightforward output feedback law to 

maintain the desired steady-state value of 𝑥∗. Sometimes referred to as energy-shaping 

or energy-balancing, this concept involves choosing to reshape the energy function in 

a way that guarantees stabilizability about a desired setpoint 𝛼 . 

Let us apply this energy-balancing strategy to a form-based passive system : 

�̇� = 𝑓(𝑥) + 𝑔(𝑥)𝑢 (3.16a) 

 

𝑦 = ℎ(𝑥) (3.16b) 

Passivity from 𝑢 𝑡𝑜 𝑦 is equivalent to the existence of a nonnegative function 

𝐻; 𝑅 → 𝑅 (i.e., the storage function) that satisfies the relations from our previous 

discussion : 

𝑑𝐻(𝑥)

𝑑𝑥
𝑓(𝑥) ≤ 0, ℎ(𝑥)

𝑑𝐻(𝑥)

𝑑𝑥
𝑔(𝑥)  

(3.17) 

Consider the passive system described by equation (3.16) with storage 

function 𝑉(𝑥). Let 𝐻 (𝑥)  be a function such that 𝐻 (𝑥)  =  𝐻(𝑥)  + 𝐻 (𝑥) has a 
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minimum at 𝑥∗, the equilibrium points of interest. If a vector function 𝛼(𝑥) that 

satisfies the partial differential equation exists , then. 

𝑑𝐻 (𝑥)

𝑑𝑥
𝑓(𝑥) + 𝑔(𝑥)𝛼(𝑥) = ℎ (𝑥)𝛼(𝑥) 

 

(3.18) 

subsequently, the control input 𝑢 =  𝛼(𝑥)  +  𝑣 transforms the initial system into the 

equation (3.16) passive. 

 

G. IDA-PBC Control 

For the (asymptotic) stabilization of nonlinear systems, a new controller design 

methodology known as interconnection and damping assignment passivity-based 

control has been developed; this method forges a Hamiltonian structure with a desired 

energy function, which qualifies as Lyapunov function for the desired equilibrium, 

rather than relying on, sometimes unnatural and technique-driven, linearization or 

decoupling procedures. The control law can be found by solving a system of partial 

differential equations that characterize the assignable energy functions. We discussed 

a controller design method in the thesis called interconnection and damping 

assignment passivity-based control (IDA-PBC), which uses the physically motivated 

principles of energy shaping and damping injection to achieve stabilization for 

underactuated mechanical systems. The closed-loop system is given a Hamiltonian 

structure by IDA-PBC. Let us consider the PCH system in (3.9) where the storage 

function 𝐻 is constant and the desired equilibrium point 𝑥∗ is a constant. The goal is 

to determine a setpoint 𝑢 =  (𝑥)  +  𝑣 for the closed-loop dynamics such that the 

system satisfies the energy-balancing relation as stated in [35]. 

𝐻 𝑥(𝑡) − 𝐻 𝑥(0) = 𝑣 (𝑠)𝑧(𝑠)𝑑𝑠 − 𝑑 (𝑡) 

where 𝐻 (𝑥) is the total energy we want, with a hard lower bound at 𝑥∗, 𝑧 is a 

new passive output, and 𝑑 (𝑡) is the dissipation term we've chosen to have equal to 
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zero. By setting 𝑣 =  0, the passivation-solving control stabilizes 𝑥∗ using the 

Lyapunov function 𝐻 (𝑥). 

This procedure is called IDA-PBC which are further explained and used to 

construct our controller in chapter IV.  

Theorem of IDA-PBC is usually given by in chapter 10 of Passivity Based 

Control: 

𝐽 𝑥, 𝛼(𝑥) + 𝐽 (𝑥) − (𝑅(𝑥) + 𝑅 (𝑥)) 𝐾(𝑥)

= [−𝐽 (𝑥) − 𝑅 (𝑥)]
𝜕𝐻

𝜕𝑥
(𝑥) + 𝑔(𝑥, 𝛼(𝑥)) 

(3.19) 

𝐽  and 𝑅  maintain their structure , i.e. 

𝐽 (𝑥) = 𝐽 𝑥, 𝛼(𝑥) + 𝐽 (𝑥) = −𝐽 (𝑥) (3.20) 

 

𝑅 (𝑥) = 𝑅(𝑥) + 𝑅 (𝑥) = 𝑅 (𝑥) ≥ 0 (3.21) 

Integrability of the underlying PDE is guaranteed if: 

𝜕𝐾

𝜕𝑥
(𝑥) =

𝜕𝐾

𝜕𝑥
(𝑥)  

(3.22) 

The equilibrium has been achieved i.e.: 

𝐾(𝑥∗) = −
𝜕𝐻

𝜕𝑥
(𝑥∗) 

(3.23) 

We can guarantee that 𝑥∗ is Lyapunov stable, i.e., the Jacobian of 𝐾(𝑥) at 𝑥∗ 

meets the bound in according to chapter 10 of Passivity Based Control: 

𝜕𝐾

𝜕𝑥
(𝑥∗) > −

𝜕 𝐻

𝜕𝑥
(𝑥 ) 

(3.24) 

The closed loop system with 𝑢 = 𝛼 (𝑥) will be a PCH system with dissipation and a 

total energy function 𝐻  under these conditions : 

𝐻 (𝑥) = 𝐻(𝑥) + 𝐻 (𝑥) (3.25) 
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Along 

𝜕𝐻

𝜕𝑥
(𝑥) = 𝐾(𝑥) 

(3.26) 

Even more, the closed-loop equilibrium at 𝑥∗ will be locally stable. In order for it to 

be asymptotically stable, 𝑥 ∗must be the largest invariant set in the set of 𝑥 ∈  𝑅  such 

that: 

𝜕𝐻

𝜕𝑥
𝑅 (𝑥)

𝜕𝐻

𝜕𝑥
(𝑥) = 0 

(3.27) 

If and only if the integrability condition in equation (3.22) holds, then for every 

given the solution of equation (3.19) is a gradient of the form (3.26). If we plug these 

values into equation (3.25), we find that the closed-loop system is a PCH system with 

a constant total energy (3.25). Here, we show that the desired equilibrium is stable 

under (3.23) and (3.24). 

Building stabilizing controllers using passivity -based control is an effective and 

useful technique. By redefining both the system's output and its inputs (via a feedback 

transformation), this technique turns a previously active system into a passive one. 

Once the system has been passivated, equilibrium can be maintained by means of a 

straightforward output feedback law. The equilibrium is asymptotically stable if and 

only if the passivated system has a detectable zero state. However, the range of systems 

that can benefit from this feedback passivation technique is constrained by the need 

for feedback transformations of this kind. The passivated system must be in minimum 

phase and have a relative degree of one for this to work. When this isn't the case, we'll 

need to resort to more advanced recursive techniques like backtracking, forwarding, 

or a combination of the two to get around the problem. One more potential flaw with 

these techniques is that they necessitate familiarity with a storage function for the 

passivated system. In general, obtaining such storage functions may be challenging 

unless we can take advantage of first principle modeling of the system. Systems that 

can be implemented as port-controlled Hamiltonian systems are able to do this. 

Stabilizing controllers can be built in a methodical fashion with the help of the system's 

Hamiltonian and knowledge of its interconnection and dissipations structures. 



 

25 

H. Immersion And Invariance (I&I) Method 

Non-linear systems can be stabilized with the help of the controller design 

technique known as immersion and invariance (I&I). By introducing a target 

dynamical system, as in the I&I approach, the desired behavior of the controlled 

system can be captured. To ensure that the controlled system asymptotically behaves 

like the target system, a suitable stabilizing control law is developed. To be more 

specific, the I&I methodology is predicated on the creation of a manifold in the plant 

state-space that can be made invariant and desirable via feedback control. 

i) This closed-loop dynamics matches the desired dynamics on the 

manifold. 

ii) system state away from the manifold, in the opposite direction that the 

control law would normally steer it.  

Take into account the following discrete-time system (Yalçın and Sümer, 2015; 

Alkrunz and Yalçın, 2021): 

𝑥 = 𝑓(𝑥 ) + 𝑔(𝑥 )𝑢  (3.28) 

If the conditions listed below hold for the closed-loop system, then the equilibrium 

point 𝑥 ∗ given in (3.28) is a (globally) asymptotically stable equilibrium. 

𝑥 = 𝑓(𝑥 ) + 𝑔(𝑥 )ψ(𝑥 , ∅(𝑥 )) (3.29) 

Every possible path the system could take, 

𝑧 = ∅(𝑥 ) (3.30) 

and  

𝑥 =  𝑓(𝑥 ) + 𝑔(𝑥 )ψ(𝑥 , 𝑧 ) (3.31) 

If all are bounded and satisfy, 𝑘 ≥ 0  then according to [39]: 

lim
→

𝑧 = 0 (3.32) 

 According to the adaptive control based on the immersion and invariance 

approach is intended to meet the conditions of I&I by incorporating a new term into 

the classical certainty equivalent control and a law for updating the parameters. 
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Let us assume that there exists a parameterized function 𝜓 (𝑥 , 𝜃) at 𝜃 ∈ 𝑅 , such that 

for some unknown 𝜃 ∗ ∈ 𝑅 , the system given in (3.28) is stabilized when 

𝑥 =  𝑓(𝑥 ) + 𝑔(𝑥 )ψ(𝑥 , 𝜃∗) (3.33) 

has an equilibrium that is globally asymptotically stable 𝑥 = 𝑥 ∗, 

𝑥 =  𝑓(𝑥 ) + 𝑔(𝑥 )ψ(𝑥 , 𝜃 ) (3.34) 

and  

𝜃 = 𝛼(𝑥 , 𝜃 ) (3.35) 

𝜃 = 𝑙(𝑥 , 𝜃 ) (3.37) 

As its already mentioned that 𝜃 = 𝜃 + 𝛽(𝑥 ) where 𝜃  and 𝛽(𝑥 ) are 

basically update law and control term , it is possible to stabilize I&I with the desired 

dynamics also called target dynamics as in (Alkrunz and Yalçın, 2021) : 

𝜉 =  𝑓 ∗ (𝜉 ). (3.38) 
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IV.  MAIN RESULTS 

A. Introduction: 

In this chapter we discussed the port Hamiltonian system in discrete time 

adaptive control IDA-PBC with I &I, initially the circuit of the system is also shown 

in fig [4.1]. The adaptive control is constructed according to the requirements of the 

system.  

Our system is manufactured in a way it can be modified according to Load. 

That’s why I & I estimator is used. The error dynamics of I & I system is Lyapunov 

asymptotically stable because general structure for free design function it is presented 

in such a way. Also update rule was selected for designing the I &I estimator. 

In rest of the chapter, calculations of our system formulation of our system is 

mentioned in details with all the equations. Section B briefly includes all the equation 

of our structure in port Hamiltonian IDA-PBC used for designing in discrete-time. In 

section C equations related to I&I system with respect to our IDA-PBC adaptive 

control in discrete time is written in detail. 

B. System formulation  

The topological structure of the boost converter with constant power load is 

shown in figure 4.1. 

 

Figure 4.1: Circuit diagram 
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The total energy stored in the boost convertor is represented as the Hamiltonian 

function in the continuous-time setting  (Pang et al, 2018) is: 

𝐻 (𝑥) =
1

2
 𝐿𝑥  +  

1

2
 𝐶𝑥  (4.1)  

with  𝑥 =  𝑥      𝑥
 

=   𝑖    𝑣
 
is the state variables, L is the inductor value and C is 

the capacitor value. 

Gradient of the aforementioned Hamiltonian function is derived as: 

∇𝐻(𝑥) =
∇ 𝐻

∇ 𝐻
=

𝐿𝑥
𝐶𝑥

 
     
(4.2) 

Let us formulate the dynamics of the uncertain boost-convertor as PCH model in 

discrete-time as:  

        𝑥 − 𝑥 = (𝑇[𝐽 − 𝑅]∇𝐻)(�̅�) +  𝑇 𝑔(�̅�) u +  𝑇𝛿(�̅�, 𝜃)      
(4.3) 

where, �̅� =  as proposed in [38, 39], ∇𝐻(�̅�) ∈  𝑅  is gradient of the 

Hamiltonian function in discrete time , 𝑇 is the sampling time, 𝑢 ∈ 𝑅 is the control 

vector,  𝑔(�̅�) ∈ 𝑅  is the input vector, 𝛿(�̅�, 𝜃) ∈  𝑅  is considered as the disturbances 

term (Ortega et al, 2002) described with respect to the state variables and the unknown 

parameter 𝜃. Besides, 𝐽 = −𝐽 ∈ 𝑅  and 𝑅 = 𝑅 ≥ 0 ∈ 𝑅  are the interconnection 

matrix and dissipation matrix respectively. Namely, 

𝐽 =
0 −

1

𝐿𝐶
1

𝐿𝐶
0

 ,    𝑅 =  

𝑟

𝐿
0

0 0
 

       
(4.4) 

Here in this study, it is considered that the boost converter supplying an unknown 

constant power load which is a challenging issue and hence: 

𝜃 = 𝑃 ∈ 𝑅        
(4.5) 

where 𝑃 is considered as the unknown constant power load to be estimated. By 

considering the equations (4.1) to (4.5), the dynamics of the uncertain discrete- time 
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boost converter described by port-controlled Hamiltonian system in (4.3) could be re-

expressed as: 

𝑥 − 𝑥 = 𝑇

−𝑟

𝐿

−1

𝐿𝐶
1

𝐿𝐶
0

𝐿�̅�
𝐶�̅�

+ 𝑇

�̅�

𝐿
−�̅�

𝐶

𝑢 + 𝑇

𝑣

𝐿
−𝜃

𝐶�̅�

 

 

    
(4.6) 

Besides, the desired Hamiltonian function that represents the desired total energy in 

the boost converter is defined in continuous time setting as : 

𝐻 (𝑥) =  
1

2
 𝐿 (𝑥 − 𝑥∗ ) + 

1

2
 𝐶(𝑥 − 𝑥∗ )  

    

(4.7) 

Where 𝑥∗   is the desired equilibrium point, namely 𝑥∗ = [ 𝑖   𝑉  ]  , 𝑉   is the desired 

output voltage and 𝑖  is calculated by  

𝑖 =  
𝑉

2𝑟
[1 −  1 −

𝑃

𝑃
] 

     
(4.8) 

𝑃 =
𝑉

4𝑟
 

    
(4.9) 

The desired interconnection matrix and the dissipation matrix in the closed-loop PCH 

is expressed as : 

    𝐽  (𝑥) = 
0 − − 𝐾(𝑥, 𝑥∗)

+ 𝐾(𝑥, 𝑥∗) 0
 ,       𝑅  =  

0

0
 (4.10) 

where 𝑟 > 0  are constant arbitrary values and 𝐾(𝑥, 𝑥∗) is a time varying 

coefficient that changes with time according to the system’s states and equilibrium 

point as illustrated in (4.14). Thus, the desired boost converter system in discrete-time 

is: 

𝑥 − 𝑥 = 𝑇[𝐽  (�̅�) − 𝑅  ]∇𝐻 (�̅�)   (4.11) 
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where �̅� =  as proposed in system (Yalçın and Sümer, 2015; Alkrunz and 

Yalçın, 2021). Then, the above equations in (4.10) and (4.11) that express the dynamics 

of the desired system in discrete-time is re-written as: 

  

𝑥 − 𝑥 = 𝑇
−

𝑟

𝐿
−

1

𝐿𝐶
− 𝐾(�̅�, 𝑥∗)

1

𝐿𝐶
+ 𝐾(�̅�, 𝑥∗) −

𝑟

𝐶

𝐿(�̅� − 𝑥∗ )

𝐶(�̅� − 𝑥∗)
 

(4.12) 

C. Design of discrete-time Adaptive IDA-PBC Controller 

By considering the uncertain boost converter in (4.6) and the desired system in 

(4.12) where the right-hand sides of (4.6) and (4.12) are matched, then: 

−𝑟

𝐿

−1

𝐿𝐶
− 𝐾

1

𝐿𝐶
+ 𝐾

−𝑟

𝐶

𝐿(�̅� −  𝑥∗)

𝐶( 𝑥 −  𝑥∗)

=

−𝑟

𝐿

−1

𝐿𝐶
1

𝐿𝐶
0

 𝐿�̅�  
𝐶�̅�

+

𝑉

𝐿
�̅�

𝐶

𝑢 +

 
𝑣

𝐿
−𝜃

𝐶�̅�

 

(4.13) 

  

By simplifying the above equation, we obtain: 

 −𝑟 (�̅� − 𝑖 ) − (1 + 𝐾𝐿𝐶)(�̅� − 𝑣 ) = 𝑣  − 𝑟�̅� − (1 − 𝑢)�̅�  (4.14) 

−𝑟 (�̅� − 𝑣 ) + (1 + 𝐾𝐿𝐶)(�̅� − 𝑖 ) = (1 − 𝑢)�̅� −  
𝜃

�̅�
 (4.15) 

where 𝐾 = 𝐾𝐿𝐶 and it is derived as: 

𝐾 =
𝑟 (�̅� − 𝑖 )�̅� +  𝑟 (�̅� − 𝑉 )�̅� − 𝜃 − 𝑟�̅� +  𝑣  �̅�

�̅�  𝑉 − �̅� 𝑖
− 1 

 

  
(4.16) 

By considering (14), (15) and (16) and by replacing 𝜃 with 𝜃 , then the adaptive 

control law can be obtained as: 

𝑢(�̅� , 𝜃 ) = 1 −
𝜃

�̅� �̅�  
+

𝑟 (�̅� − 𝑉  ) − (�̅� − 𝑖 )(𝐾 + 1)

�̅�
 

   
(4.17) 
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D. Design of parameter estimator using I&I technology 

In this section, the design of I&I based estimator is addressed in discrete-time 

setting system (Alkrunz and Yalçın, 2021).  Let us recall the uncertain system 

formulation of the boost converter in (4.6): 

𝑥

𝑥
−

𝑥
𝑥 = 𝑇

−𝑟

𝐿

−1

𝐿𝐶
1

𝐿𝐶
0

𝐿�̅�
𝐶�̅�

+ 𝑇

�̅�

𝐿
−�̅�

𝐶

𝑢 + 𝑇

𝑣

𝐿
−𝜃

𝐶�̅�

 

   
(4.18) 

If we write the dynamics of the system’s states separately, then: 

𝑥 =
−𝑇 𝑟

𝐿
�̅� −

𝑇

𝐿
�̅� +

𝑇

𝐿
�̅� 𝑢 +

𝑇𝑣

𝐿
+ 𝑥  

   
(4.19) 

𝑥 =
𝑇

𝐶
�̅� −

𝑇

𝐶
�̅� 𝑢 −

𝑇𝜃

𝐶�̅�
+ 𝑥  

   
(4.20) 

Let us define the parameter estimation error as: 

𝑧 =  𝜃 − 𝜃 = 𝜃 + 𝛽(𝑥 )𝑥 − 𝜃   
(4.21) 

𝑧 = 𝜃 + 𝛽(𝑥 )𝑥 − 𝜃 (4.22) 

where 𝛽(𝑥) is a free design function to be selected such that the estimator is asymptotic 

Lyapunov stable. By taking the difference equation of (4.21) and (4.22), then: 

𝑧 − 𝑧 =  𝜃 − 𝜃 − 𝛽(𝑥 )𝑥 + 𝛽(𝑥 )𝑥    
(4.23) 

By replacing 𝑥  in (4.23) by (4.20), then we have: 

𝑧 − 𝑧 =  𝜃 − 𝜃 − 𝛽(𝑥 )𝑥 + 𝛽(𝑥 )
𝑇

𝐶
�̅� − �̅� 𝑢 −

𝜃

�̅�
+

𝐶

𝑇
𝑥  

  
(4.24) 

Or, the above equation (4.24) can be expressed as: 

𝑧 − 𝑧 =  𝜃 − 𝜃 − 𝛽(𝑥 )𝑥 + 𝛽(𝑥 )
𝑇

𝐶
�̅� − �̅� 𝑢 +

𝐶

𝑇
𝑥

− 𝛽(𝑥 )
𝑇

𝐶�̅�
𝜃 

 
(4.25) 

   By selecting the update law as:            
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𝜃 = 𝜃 + 𝛽(𝑥 )𝑥 − 𝛽(𝑥 )
𝑇

𝐶
�̅� − �̅� 𝑢 +

𝐶

𝑇
𝑥 + 𝛽(𝑥 )

𝑇

𝐶�̅�
𝜃  

 
(4.26) 

gives the dynamics of the estimation error as: 

𝑧 − 𝑧 =  𝛽(𝑥 )
𝑇

𝐶�̅�
 𝜃 − 𝜃 = 𝛽(𝑥 )

𝑇

𝐶�̅�
𝑧  

(4.27) 

 

𝑧 =  1 +  𝛽(𝑥 )
𝑇

𝐶�̅�
 𝑧 

 
(4.28) 

  

Let us select the free design function 𝛽(𝑥 ) as 

𝛽(𝑥 ) =  
−𝛼𝐶 

𝑇
�̅�  

   
(4.29) 

Then, the dynamics of the estimation error be as follows: 

𝑧 = [ 1 − 𝛼 ]𝑧 (4.30) 

where 𝛼 is a constant free parameter to be selected as 0 < 𝛼 < 1 to guarantee the 

asymptotic stability of the estimator. 

 

Proof: 

By considering the dynamics of the uncertain discrete-time boost converter 

described in (4.6), by defining the estimator dynamics as in (4.21) and (4.22), by 

selecting the parameter update rule as in (4.26), and by selecting the free parameter 

function 𝛽(𝑥) as in (4.29), then: 

𝑧 =  1 +  𝛽(𝑥 )
𝑇

𝐶�̅�
 𝑧 = [ 1 − 𝛼 ]𝑧 = 𝜌𝑧  (4.31) 

where 𝜌 = (1 − 𝛼) and 0 < 𝛼 < 1, then 𝜌 satisfies 0 < 𝜌 < 1.  

Let us select the Lyapunov candidate function as:  

𝑉 = 𝑧   (4.32) 

Then, the time difference of (4.32) is: 
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∆𝑉 = 𝑉 − 𝑉 = 𝜌 𝑧 − 𝑧 = 𝑧 𝜌 − 1 < 0  (4.33) 

Thus, asymptotic stability of the estimator is proved. 

 

E. Circuit Diagrams in MATLAB- SIMULINK: 

The main circuit that was constructed was mentioned and its subsystem is also 

shown. 

 

 

Figure 4.2 Main system 

 

Figure 4.3 Sub-System of main system 
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Figure 4.4 Actual system of discrete and estimation 

 

 

Figure 4.5 Discrete estimation compare. 
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V. SIMULATIONS: 

A. Simulations and Results 

In this section, the results of numerical simulations are presented to verify the 

effectiveness of the proposed adaptive IDA-PBC control under large-scale variations 

of the constant power load. The unknown constant power load is estimated via the 

presented I&I-based estimator and the estimated value of the load power is inserted 

into the control rule. The simulations are performed in MATLAB/SIMULINK with 

switching frequency of 20kHz, sampling frequency of 2MHz, and the converter 

parameters as given below. 

 

 

Table 5.1 Parameters Using in Boost Converter 

Parameter Symbol Value 

Input Voltage 𝑉  270V 

Output Voltage 𝑉  350V 

Inductance L 805𝜇𝐻 

Capacitance C 460 𝜇𝐹 

Inductor Resistance r 0.07Ω 

Switching Frequency 𝑓  20kHz 

  

The parameters of the desired energy function is assumed as: 𝑟 = 7 and 𝑟 = 0. 

The parameter of the free design function is assumed as: 𝛼 = 0.001. The simulations 
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are performed under sampling time, 𝑇 = 5𝑒 − 7. The initial conditions are selected as: 

𝑥(0) = [0 50]  and 𝜃 (0) = 0.01. 

In order to show effectiveness and robustness of the proposed adaptive IDA-

PBC controller, we applied a step change to the constant power load. Namely, the load 

power is changed from 1.5kW to 3kW and the performance of the estimator and the 

closed-loop system is presented below. 

The simulation results are shown in the Figures 2 and 3. In Figure 2, the closed-

loop of the system dynamics 𝑥 = [𝑖 𝑉 ]  are shown for different two cases in 

comparison to the desired closed-loop dynamics 𝑥 = [𝑖 𝑉 ]  when the constant 

power load changes from 1.5KW to 3KW. The black color responds to the desired 

response 𝑥 = [𝑖 𝑉 ] , the blue color responds to the case when the controller 

knows the true value of the power load, while the green color responds to the case 

when the controller does not know the true value of the power load where the proposed 

adaptive controller uses the estimated value of the unknown constant power load. As 

you see from the performance that the proposed adaptive controller with estimation 

shows its productivity and successfully preserves the desired closed-loop dynamics. 

Figure 3 shows the estimation of the constant power load when it is step changed 

from 1.5KW to 3KW. As it is clear from the figure that the estimator successfully 

converges the true values of the unknown power load. 

  

Figure 5.1 Estimation output voltage / time 
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Figure 5.2 Output voltage and inductor current dynamics corresponding to the 

adaptive IDA-PBC controller and the controller with true values. 

 

 

Figure 5.3: The dynamic of the estimated parameter 

  

In
du

ct
or

 C
ur

re
nt

 [A
]

E
st

im
at

ed
 P

ow
er

 L
oa

d
 [W

]



 

38 

 

VI. CONCLUSION 

This thesis presents a discrete-time adaptive IDA-PBC controller for the dc-dc 

boost converter to regulate the output voltage. This thesis considers unknown constant 

power load where the power load is estimated using I&I-based estimator, which 

guarantees its asymptotic stability, and the estimated value of the constant power load 

is inserted to the adaptive controller supplying an automatic tuning mechanism. The 

proposed adaptive controller is compared to the desired values and also compared to 

the controller when the constant power load is known. The simulation results show 

that the proposed adaptive controller successfully preserve the desired dynamics under 

large-scale variations in the constant power load. 
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APPENDICES 

 

A. Actual discrete system for theta 

function [out]=actual_sys_discrete_theta(inputs) 

%iL = x1    vo = x2 

x1 = inputs(1); 

x2 = inputs(2); 

xe1 = inputs(3); 

xe2 = inputs(4); 

P = inputs(5); 

%theta = inputs(6); 

x1d = (3*x1 - xe1)/2; 

x2d = (3*x2 - xe2)/2; 

if x1d<0.001 && x1d>=0 

    x1d=0.001; 

end  

if x2d<0.001 && x2d>=0 

    x2d=0.001; 

end 

r = 0.07; 
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L = 805e-6; 

C = 460e-6; 

%P = 1500; 

vi = 270; 

vd = 350; 

% T = 0.00001; 

T = 5e-7; 

  

r1 = 7; 

r2 = 0; 

Pmax = (vi^2)/(4*r); 

id = (vi/(2*r))*(1 - sqrt(1-(P/Pmax))); 

ich = P/x2d; 

J = [0 -1/(L*C);1/(L*C) 0]; 

R = [r/(L*L) 0;0 0]; 

% R = 0; 

g = [x2d/L;-x1d/C]; 

zeta = [vi/L;-ich/C]; 

gradH = [L*x1d;C*x2d]; 

kk = (r1*(x1d-id)*x1d + r2*(x2d-vd)*x2d - x2d*ich - (x1d^2)*r + vi*x1d)/(vd*x1d - 
x2d*id); 

k = kk - 1; 

K = k/(L*C); 

Jd = [0 (-1/(L*C))-K;(1/(L*C))+K 0]; 

Rd = [r1/(L*L) 0;0 r2/(C*C)]; 

gradHd = [L*(x1d-id);C*(x2d-vd)]; 

d = 1 - (ich/x1d) + (r2*(x2d-vd)-kk*(x1d-id))/(x1d); 

% d = inv(transpose(g)*g)*transpose(g)*((Jd-Rd)*gradHd - (J-R)*(gradH + 
gradH*theta) - zeta); 

x = [x1;x2]; 
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x_plus = T*[-r/(L*L) -1/(L*C);1/(L*C) 0]*[L*x1d;C*x2d]+ T*[x2d/L;-x1d/C]*d + 
T*zeta + x; 

out= [x_plus;vd;id]; 

end 

 

B. Actual discrete system for estimation 

function [out]=actual_sys_discrete_Est(inputs) 

%iL = x1    vo = x2 

x1 = inputs(1); 

x2 = inputs(2); 

xe1 = inputs(3); 

xe2 = inputs(4); 

xee1 = inputs(5); 

xee2 = inputs(6); 

P_est = inputs(7); 

theta_hat = inputs(8); 

x1d = (3*x1 - xe1)/2; 

x2d = (3*x2 - xe2)/2; 

x1d_e = (3*xe1 - xee1)/2; 

x2d_e = (3*xe2 - xee2)/2; 

if x1d<0.001 && x1d>=0 

    x1d=0.001; 

end 

if x2d<0.001 && x2d>=0 

    x2d=0.001; 

end 

r = 0.07; 

L = 805e-6; 

C = 460e-6; 

%P = 1500; 
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vi = 270; 

vd = 350; 

% T = 0.00001; 

T = 5e-7; 

r1 = 7; 

r2 = 0; 

Pmax = (vi^2)/(4*r); 

id = (vi/(2*r))*(1 - sqrt(1-(P_est/Pmax))); 

ich = P_est/x2d; 

J = [0 -1/(L*C);1/(L*C) 0]; 

R = [r/(L*L) 0;0 0]; 

% R = 0; 

g = [x2d/L;-x1d/C]; 

zeta = [vi/L;-ich/C]; 

gradH = [L*x1d;C*x2d]; 

gradH_e = [L*x1d_e;C*x2d_e]; 

kk = (r1*(x1d-id)*x1d + r2*(x2d-vd)*x2d - x2d*ich - (x1d^2)*r + vi*x1d)/(vd*x1d - 
x2d*id); 

k = kk - 1; 

K = k/(L*C); 

Jd = [0 (-1/(L*C))-K;(1/(L*C))+K 0]; 

Rd = [r1/(L*L) 0;0 r2/(C*C)]; 

gradHd = [L*(x1d-id);C*(x2d-vd)]; 

d = 1 - (ich/x1d) + (r2*(x2d-vd)-kk*(x1d-id))/(x1d); 

x = [x1;x2]; 

alpha = 0.01; 

Beta_x = -alpha*C*x2d/T; 

Beta_x_e = -alpha*C*x2d_e/T; 

P_est = theta_hat + Beta_x_e*x2; 

% d = inv(transpose(g)*g)*transpose(g)*((Jd-Rd)*gradHd - (J-R)*(gradH + 
gradH*theta_est) - zeta); 
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theta_hat_plus = theta_hat + Beta_x_e*x2 - Beta_x*T*(1/C)*(x1d - x1d*d + 
(C/T)*x2) + Beta_x*T*(1/(C*x2d))*P_est; 

x_plus = T*[-r/(L*L) -1/(L*C);1/(L*C) 0]*[L*x1d;C*x2d] + T*[x2d/L;-x1d/C]*d + 
T*zeta + x; 

out= [x_plus;P_est;theta_hat_plus]; 

end 
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