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Abstract
In this study, we attempt to show the reason behind the poor estimation of the future values of foreign exchange-rate 
(FXR) signals under difference-equation modeling, using the neural network approach for evaluating the local system 
coefficients. To do this, we have splitted EUR/USD and AUD/CAD signals into many small-segments and modeled each 
segment as the signal representation of a linear time-invariant (LTI) system using the simple linear difference equation 
(LDE) formulation. After a precise segmentation of each FXR signal such that an LTI system based modeling is highly 
accurate in each segment, it is observed that the coefficient values of the corresponding LDEs are highly volatile, which 
indicates that a reliable estimation would be very difficult using LDE modeling. Although the LDE coefficients are usu-
ally observed to take values within a small range over a given FXR signal segment (sample-set), frequent sudden-jumps 
in coefficient values do occur, which subjects/forces the dynamics of FXR signals to undertake the dynamics of these 
sudden-jumps rather than the dynamics of any other deterministic or stochastic process. To support this observation, 
the range of variation of the LDE coefficients over each segment is analyzed to quantify the volatility of the foreign-
exchange market for risk assessment.
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• The usual range of values that the DE coefficients take 
is specified.
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1 Introduction

Accurate prediction of Foreign-Exchange Rate (FXR) signals 
has been a hot topic in computational finance for decades 
[1–3]. Many studies have focused on increasing the estima-
tion accuracy for future values/segments of FXR signals 
[1–3, 6–10]. Consequently, many different methods or 
algorithms have been developed or proposed for a pre-
cise estimation. The majority of the proposed methods are 
a combination of deterministic and stochastic methods 
[4–11], while a smaller portion of them are either purely 
deterministic or stochastic methods [7, 12–15]. Based on 
our investigations, there is no reliable method that ena-
bles a precise estimation of future data segments for FXR 
signals. Particularly, stochastic methods have resulted in 
estimations of poor accuracy [11, 15]. A common observa-
tion in most of the studies in the literature, is that reliable 
estimations can only be made for relatively narrow time 
intervals [1–6, 12–15], and there is no reliable method 
that allows for a high estimation accuracy in the long-run 
[8–11]. Often, algorithms that have been proposed as reli-
able for long-term estimation either do not work as pro-
posed or fail much quicker than expected due to inherent 
chaoticity [12–15].

The reason behind the failure of almost all proposed 
methods for the precise estimation of future data seg-
ments of FXR signals, is often thought as the complicated 
human-based social dynamics, which involve multiple 
sub-dynamics, each of which are complicated in them-
selves [16, 17]. For this reason, many studies have pro-
posed that the FXR signals are chaotic in nature rather 
than stochastic [12–19]. However, stochastic analysis of 
FXR signals still prevails in the literature [20–27]. Neverthe-
less, a precise estimation of future data segments of FXR 
signals does not seem to be possible, as to this date there 
is no study that has reported a high estimation accuracy 
over a long time-interval.

In this study, we will attempt to show why difference-
equation based modeling is not accurate for estimating 
future data-sets of FXR signals. For our analysis, we will 
decompose a given FXR signal into many segments, such 
that in each segment we can apply the linear time-invari-
ant (LTI) system approximation and model the signal/seg-
ment/local system behavior via linear difference equation 
(LDE) formulation, or via autoregressive (AR) time-series 
(which are also an LDE formulation, but include a vari-
ance term for stochastic modeling). We will perform the 
LDE modeling over all segments and investigate the vari-
ation and volatility of the LDE coefficients, which will be 
evaluated using a neural-network. A small variance or low 
volatility in the coefficient values would indicate that the 
system is relatively stable and a precise estimation is easier, 

whereas high-variance or high-volatility of the coefficients 
would indicate difficulty in estimating future data samples. 
Hence, a reliable estimation is often possible unless the 
coefficients are highly volatile [28–31]. The reason for this 
occurence is that even if one can accurately estimate the 
future data samples of a given signal over a certain interval 
where the signal is relatively stable, high volatility would 
eventually cause a sharp increase/decrease in the signal 
value that would swallow one’s profits (from prior accu-
rate estimations) unless the sharp increase/decrease itself 
is accurately predicted. Therefore, if the underlying system 
is highly volatile, the dynamics of these sharp changes in 
the signal value should be the major investigation rather 
than a general approach that attempts perform a direct 
estimation based on all previous values of the signal under 
investigation.

Our LDE modeling based approach stems from the 
fact that any nonlinear time-variant system can be locally 
approximated as an LTI system over a small time interval. 
Hence, we will first perform segmentation on a given FXR 
signal, such that each segment is small enough to be accu-
rately modeled via LTI system description. After that, LDE 
formulation will be used, and the local system behavior 
that corresponds to the segment under investigation will 
be described by the associated local-system coefficients.

Initially, we will apply the AR time-series formulation to 
analyze the local (LTI) system behaviour and perform vari-
ous daily (24 upcoming hours or 24samples) predictions 
based on the available data at each segment. Throughout 
the paper, we will choose the segment size (or sample size) 
as N = {120, 240, 480, 960} samples (1 sample indicates an 
hour of the day) respectively. We will then gradually shift 
the investigated segment by 24 samples (hours) for every 
single shift, and perform a new daily prediction at each 
shift. While investigating each segment through 24-h shifts 
(each adjacent segments are only 24 samples apart), we 
will continuously compare the predicted daily-data and 
the actual daily-data via measuring their correlation coef-
ficient. After measuring the correlation coefficient for each 
and every segment, we will examine the probability dis-
tribution function of the correlation coefficient to investi-
gate whether the difference-equation (in this case AR time 
series) formulation is accurate for prediction over a small 
data-segment (Monte-Carlo analysis). If the distribution 
function of the correlation coefficient is skewed towards 
ρ = 1, then this would mean that difference-equation 
based modeling is accurate for prediction over a segment. 
For this part, we will use the built-in MATLAB functions for 
AR time series based prediction.

Followingly, we will formulate the local system 
behavior in terms of the plain LDE formulation (no bias 
or variance term included, hence no AR time-series 
description) for a pure analysis of the time variation of 
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the coefficients. At this part, we will work on a constant 
segment with 960-samples (40 days), which are the last 
960 samples of the FXR signal under investigation (either 
EUR/USD or AUD/CAD). This time, instead of using con-
stant system coefficients to model the whole local sys-
tem behaviour, we will adaptively solve for the LDE coef-
ficients for each single sample of the segment, which 
means that at each sample shift, the LDE coefficients of 
the segment will be re-evaluated (a total of 20 coeffi-
cients will be used). This way the time variation of the 
LDE coefficients will be observed throughout the entire 
segment. Small coefficient variations over time would 
indicate a more stable system, whereas huge variations 
would indicate a highly volatile system. Here, a MATLAB-
based neural-network function will be implemented for 
an adaptive solution of the system coefficients, which 
will be presented in the next section. To analyze the vola-
tility of the system, we will plot the distribution func-
tion for various coefficients and compute their maximum 
attained value. Frequent recurrence of extremely high 
values in the adaptively-varying local system coefficients 
would mean that accurate estimation for future values 
is difficult, and would depend on understanding the 
dynamics behind this volatility.

In Sect. 2 (Methods), we describe the segmentation of 
an FXR signal data for LTI system based modeling, and how 
to solve for the associated LDE coefficients using AR time 
series modeling and/or a simple neural-network, via MAT-
LAB based implementation. Section 3 involves the analy-
sis of the prediction accuracy under LDE based modeling, 
comparison of the actual data with the predicted data, and 
the quantification of the accuracy via computation of the 
correlation coefficient of the actual and the predicted data. 
Section 3 also illustrates the volatility of the LDE coeffi-
cients via tables and figures. In the discussion part (Sect. 4), 
we discuss the significance of our findings regarding the 
volatility of the LDE coefficients, and their meaning within 
the context of earlier work on the topic.

2  Methods

2.1  Autoregressive (AR) time‑series modeling 
(stochastic modeling)

We have initially investigated FXR signals through AR 
time series modeling in order to examine the estimation 
accuracy for difference-equation based models. For this 
part, we have segmented the FXR signals such that each 
adjacent segment is separated by 24 samples (concern-
ing daily/24 h based estimations). Notice that if the num-
ber of training data samples (N) is large, the segments 

overlap greatly, though N cannot be chosen too-large to 
safeguard the LTI system approximation

After the segmentation of the overall FXR signal �  , 
each segment is analyzed using AR time series modeling, 
which is again based on the LTI system approximation 
via LDE formulation, but with the addition of a bias term 
and a white noise signal

The description for the solution of all coefficients ak is a 
bit involved using AR time-series modeling, and a detailed 
description of the process can be found in [29–32]. Here, 
we have used the following built-in MATLAB script to solve 
for the M coefficients at a given data segment � ( 1 < 𝜉 < P ) 
of the hourly (1sample indicates an hour) EUR/USD and 
AUD/CAD signals (conventionally indicated as EURUSD60 
and AUDCAD60 in FX Market-based computer programs). 
Two example runs for M = {50,20} coefficients, are given 
respectively for both FXR signals as follows.

m1: Beginning index of the data segment, m2: Final index 
of the data segment
>> Signal = AUDCAD60(m1:m2) >> y = iddata(Signal,[]) 
>> coefficients = ar(y,50)
>> Signal = EURUSD60(m1:m2) >> y = iddata(Signal,[]) 
>> coefficients = ar(y,50)
>> Signal = AUDCAD60(m1:m2) >> y = iddata(Signal,[]) 
>> coefficients = ar(y,20)
>> Signal = EURUSD60(m1:m2) >> y = iddata(Signal,[]) 
>> coefficients = ar(y,20)

2.2  Pure linear‑difference‑equation (LDE) 
based analysis over small data segments 
(deterministic modeling)

The FXR market signals are known to represent nonlinear 
time variant systems [28, 29], hence FXR signals, in their 
entirety, cannot be modeled using the concepts of linear 
time-invariant (LTI) systems. However, a relatively small 
segment of the overall signal can be approximated as a 
representation of an LTI system [7, 11], as any nonlinear 
time-variant system approximately behaves like an LTI 
system over relatively small time-intervals. Hence, a given 

(1)

�(n;1) =
[

s1, s1,… , s
N

]

,�(n;2) =
[

s25, s26,… , s
N+24

]

,… ,�(n;P)

=
[

s24P+1, s24P+2,… , s24P+N

]

(2)�(n, �) = y(n) =

M
∑

k=1

aky(n − k) + a0 + �(n)

a0 ∶ Bias term, �(n) ∶ White noise(zeromean and constant variance),

ak ∶ LTI system coefficients
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FXR signal can be broken down into many small segments, 
within which the system is approximated to behave like 
an LTI system, such that the system behavior can be mod-
eled using the LDE formulation whose coefficients can be 
evaluated using the least squares (LS) method or via using 
neural-network modeling [29–36]. Doing so and solving 
for the corresponding system coefficients for each and 
every segment via a neural-network (see Fig. 1), the gen-
eral behavior of the system coefficients can be observed 
over many segments, and the variance and volatility of the 
system coefficients can be analyzed. To do this analysis, we 
first start with the expression of the overall FXR signal �

where �[.] is a nonlinear operator and Ω is the time varying 
set of system coefficients that relates the final value n of 
the FXR signal to its previous values k = {1,2,… ,M}, M < N.

To perform an LTI system analysis, once again, we break 
down the total FXR signal into many small segments

For each data segment, we denote the local signal as 
y(n), and perform the LTI system approximation using the 
LDE formulation with M coefficients

Finally, we solve for the system coefficients (local) 
at a given segment with length N (which means N data 
samples), for the corresponding signal �(n, �) = y(n) , 

(3)�(n) = �

[

M
∑

k=1

Ω(n, k)�(k)

]

(4)
� = �(n;�) = [�(n;1),�(n;2),

… ,�(n;P)](a total of P data segments)

(5)�(n, �) = y(n) =

M
∑

k=1

aky(n − k)

using a neural network which solves the following 
matrix-equation

Once the coefficients are evaluated, the upcoming 
samples [ y(n + 1), y(n + 2),… ] can be estimated via 
Eq. 5, though with a slowly-decreasing accuracy due to 
the accumulation of error through each added sample. 
To minimize any possible error in evaluating the coef-
ficients, we have taken N = M = 24 in this study (square 
matrix form), however the model can also be used for 
arbitrary values of N and M (N ≥ M).

Repeating the same analysis for every segment 
� = {1, 2,… , P} , we obtain P values for each coefficient, 
which altogether constitute a coefficient matrix A with 
entries ak�

Examining the segment-by-segment variation of 
each coefficient allows us not only to observe the local 
system behavior within a given time-interval, but also 
the inter-segmental variance and volatility of the coef-
ficients through continuous LTI system approximation 
based modeling.

In the context of pure (deterministic) LDE analysis, 
the time variation of the coefficients will be investi-
gated sample-by-sample, that is, the segments will be 

(6)
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⎥

⎦

function [h,e,d,x,step] = n_network(y,h,M,iter)
step=1*10^0;
x=zeros(M,1);
delta=1*10^-6;
for k=1:iter
d=h*x;
e(k)=norm(y-d);
for i=1:M

for j=1:1
        q=x;
        q(i,j)=q(i,j)+delta;
        dh=h*q;
        eh=norm(y-dh);
        grad=(eh-e(k));
        x(i,j)=x(i,j)-step*grad;

end
end
end

Fig. 1  Neural network model of an LDE and the associated MATLAB function for the solution of its coefficients
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separated by a single sample, so that each new segment 
will be formed by a unit sample shift. Hence, each new 
segment differs from the adjacent segment only by a sin-
gle sample. This way, the coefficients will be adaptively 
updated for each new sample of the FXR signal at hand. 
Correspondingly, we will be able to observe the sam-
ple-by-sample variation of each coefficient for a stricter 
volatility analysis of the FXR signal under investigation. 
Hence, the segments are expressed as

3  Results

3.1  Stochastic difference‑equation (AR time‑series) 
based investigation for the EUR/USD 
exchange‑rate

Figure 2 illustrates an AR time-series modeling based 
(as described in Sect. 2.1) estimation of the upcom-
ing 24 data samples, using an apriori set of 120 data 
samples for the EUR/USD exchange rate, via 20 coeffi-
cients. The analyzed apriori (training) data corresponds 
to the period between March 2, 2017, and March 6, 
2017. The data for March 9, 2017 (following weekend) 
is first forecasted, and then compared with the actual 
data for March 9, 2017 to quantify the accuracy of the 
estimation. The resulting estimation accuracy seems to 

�(n;1) =
[

s1, s1,… , s
N

]

,�(n;2) =
[

s2, s3,… , s
N+1

]

,… ,�(n;P)

=
[

s
P
, s

P+1,… , s
N+P−1

]

be reasonable. The correlation coefficient between the 
forecasted signal and the actual signal is computed as 
0.35, which indicates the accuracy of the estimation.

However, a second analysis over a later time-interval 
(June 2017) shows that the forecasting accuracy is not 
always the same. Figure 3 shows this occurence. Using 120 
apriori data samples, once again the subsequent 24 data 
samples are estimated using AR time-series with 20 coef-
ficients. This time the forecasted signal is quite different 
from the actual signal, which was naturally already known 
but assumed to be unknown and reserved for comparison. 
The correlation coefficient between the forecasted signal 
and the actual signal is computed as − 0.16, which signi-
fies the weakness of the accuracy. Hence, a Monte-Carlo 
analysis needs to be performed for a reliable quantification 
of the estimation accuracy under AR time-series modeling 
with various apriori data set-lengths and different number 
of coefficients.

Therefore, we have performed 400 consecutive 
estimations over the EUR/USD exchange rate signal 
to forecast the subsequent 24  h at each estimation 
[samples (1 h = 1 data sample)] using various training 
data-set lengths. Figure 4 shows the distribution of 
the correlation coefficient ρ between the actual data 
and the forecasted data for various number of train-
ing data samples {N = [120, 240, 480, 960]} under the 
use of 20 coefficients (M = 20). A near-perfect fore-
casting accuracy would mean that the distribution is 
skewed towards ρ = 1, which is not observed here in 
none of the cases. The distribution resembles more 
of a uniform-distribution rather than a Gaussian one, 
which would at least give some information about the 
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Fig. 2  a Forecasting the upcoming 24 data samples of the EUR/USD exchange rate using the apriori 120 data samples. b Comparison of the 
forecasted data [24 samples (hours)] with the actual data. There is reasonable forecasting accuracy with a correlation coefficient of 0.35
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correlation coefficient between the actual and the 
forecasted data samples. From this result, it can be 
inferred that the estimation of future values using the 
AR time-series model is not precise in its most gen-
eral formulation. Based on Fig. 4, the accuracy of esti-
mation does not seem to increase by increasing the 
number of training data samples. It should be noted 
that the use of lower number of coefficients such as 
M = {15, 10, 5} does not seem to increase or decrease 
the accuracy of the estimation either, which is again 
indicated by the distribution of the correlation coeffi-
cients. As those cases were not noteworthy, they were 
not illustrated here.

Similarly, Fig. 5 shows the distribution of the correla-
tion coefficient ρ between the actual data and the fore-
casted data in terms of the number of trials, for a train-
ing dataset of N = [120, 240, 480, 960] samples, and 50 
coefficients. Despite the increase in the number of coef-
ficients, the distribution is still relatively uniform with no 
apparent concentration near − 1 or 1. Also, there is no 
noteworthy difference from the distributions that were 
obtained using 20 coefficients. From this observation, 
we conclude that using an AR time-series (stochastic 
difference-equation [37–42]) model does not lead to an 
accurate estimation of future data samples, nor it does 
provide useful statistics that would help increasing the 
accuracy of the estimation. The occasional accurate esti-
mations of future data samples are merely by chance and 
are not an indication of significant findings. We believe 
this has something to do with the high volatility of the 
exchange rate market, rendering forecasting almost 

useless. The volatility of the exchange rate market will 
be investigated in detail in the following section.

3.2  Deterministic difference‑equation based 
investigation for the EUR/USD exchange‑rate

Based on the formulation described in 2.2, the LTI-
system coefficients of the last 960 samples of the EUR/
USD exchange rate are adaptively computed via neural-
network based solution. The variations of the 4th, 8th, 
12th, and 16th coefficients are shown in Fig.  6 (also 
given in Table 1). One can notice the high volatility of 
the coefficients. Although, often more than 95% of the 
coefficient values are within the interval [− 20, 20], occa-
sional jumps are critically high. This would mean that 
even one would make a reliable estimation over a cer-
tain time interval, these occasional but persistent jumps 
would make any estimation irrelevant as their value is 
much higher than the usual coefficient values, which 
would strongly subject the overall dynamics of the FXR 
signal/system to their own stochastic/chaotic behavior, 
rendering direct-estimation to be of minor importance 
compared to analysis of jump-behavior. The dynamics 
behind these jumps are not investigated in this study, 
however, the attained results show that if one has the 
aim of long-term exchange-rate prediction, one should 
focus more on determining the nature of these jumps 
rather than a direct forecasting approach over a section 
of the investigated exchange-rate signal.
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Fig. 3  a Forecasting the upcoming 24 data samples of the EUR/USD exchange rate using the apriori 120 data samples. b Comparison of the 
forecasted data [24 samples (hours)] with the actual data. The forecasting accuracy is weak, with a correlation coefficient of − 0.16
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3.3  Stochastic difference‑equation (AR time‑series) 
based investigation for the AUD/CAD 
exchange‑rate

The previously described AR time-series analysis is 
repeated, this time for the AUD/CAD FXR signal. Figure 7 
illustrates an AR time-series modeling based estimation, 
which again deals with the estimation of the upcoming 
24 data samples, using an apriori set of 120 data samples 
for the AUD/CAD exchange rate, via 20 coefficients. The 
analyzed apriori data corresponds to the period between 
March 2, 2017, and March 6, 2017 as in the case for EUR/

USD. The data for March 9, 2017 is forecasted and then 
compared with the actual data to compute the accuracy of 
forecasting. The resulting estimation accuracy is poor. The 
correlation coefficient between the forecasted signal and 
the actual signal is computed as 0.08, which is quite low.

As in the case of EUR/USD exchange-rate, further analy-
sis of the AUD/CAD exchange-rate at a later date indicates 
a different forecasting accuracy as shown in Fig. 8. Once 
again, using 120 apriori data samples, the subsequent 24 
data samples are estimated using AR time-series mode-
ling with 20 coefficients at some later time-interval (June 
2017). This time the forecasted signal is quite correlated 
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Fig. 4  Distribution of the correlation coefficient between the actual 
data and the estimated data for a N = 120, M = 20, b N = 240, M = 20, 
c N = 480, M = 20, d N = 960, M = 20. None of the distributions are 

skewed towards − 1 or 1, but remain relatively uniform over the 
whole interval, which indicates no reliable estimation accuracy
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with the actual signal. The correlation coefficient between 
the forecasted signal and the actual signal is computed 
as 0.83, which indicates good accuracy. Due to such 
conflicting results, once again, a Monte-Carlo analysis is 
performed to quantify the estimation accuracy under AR 
time-series modeling with various apriori data-set lengths 
and different number of coefficients.

As with the EUR/USD exchange-rate, 400 consecu-
tive estimations over the AUD/CAD exchange-rate signal 
have been performed to forecast the upcoming 24 h at 
each estimation using various training data-set lengths. 

Figure 9 illustrates the distribution of the correlation coef-
ficient ρ between the actual data and the forecasted data 
for various sizes of training data samples {N = [120, 240, 
480, 960]} under the use of 20 coefficients (M = 20). Once 
again, the distribution resembles more of a uniform-dis-
tribution rather than a Gaussian one, and the distribution 
is not skewed towards � = 1 . The accuracy of estimation 
does not increase via increasing the size of training data 
samples. The use of lower number of coefficients such as 
M = {15, 10, 5} does not increase/decrease the accuracy of 
the estimation.
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Fig. 5  Distribution of the correlation coefficient between the actual 
data and the estimated data for a N = 120, M = 50, b N = 240, M = 50, 
c N = 480, M = 50, d N = 960, M = 50. None of the distributions are 

skewed towards − 1 or 1, but remain relatively uniform over the 
whole interval, which indicates no reliable estimation accuracy
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Similarly, Fig. 10 shows the distribution of the correla-
tion coefficient ρ between the actual data and the fore-
casted data in terms of the number of trials, for a training 
dataset of N = [120, 240, 480, 960] samples, and 50 coef-
ficients. Although the number of coefficients has greatly 

increased, the distribution remains mostly uniform with no 
sign of concentration near − 1 or 1. Furthermore, there is 
no significant difference from the distributions that were 
obtained using 20 coefficients (or less). This observation 
leads us to infer that the increase/decrease of the number 
of coefficients does not significantly affect the estimation 
accuracy. The estimation accuracy remains weak regard-
less of the number of coefficients and the training data 
size.

3.4  Deterministic difference‑equation based 
investigation for the AUD/CAD exchange‑rate

As in Sect. 3.2 (for the case of EUR/USD), the variations of 
the 4th, 8th, 12th, and 16th coefficients for the deterministic 
difference-equation modeling of the AUD/CAD exchange-
rate, are given in Fig. 11 (also in Table 2) using the neural-
network based solution. Once again, the high volatility of the 
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Fig. 6  Hourly variation of the 4th, 8th, 12th, and 16th coefficient for the EUR/USD exchange-rate signal

Table 1  Probability distributions of the 4th, 8th, 12th, and 16th 
coefficients

K P
(

a4 < K
)

P
(

a8 < K
)

P
(

a12 < K
)

P
(

a16 < K
)

1 0.5748 0.5479 0.5716 0.5038
3 0.8428 0.8052 0.8105 0.8149
5 0.9042 0.8784 0.8751 0.8773
10 0.9505 0.9429 0.9494 0.9386
30 0.9806 0.9806 0.9817 0.9806
50 0.9892 0.9925 0.9849 0.9871
100 0.9978 0.9935 0.9957 0.9989
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coefficients is evident. Even though around 96% of the coef-
ficient values are within the interval [− 20, 20], occasional 
jumps have much higher values, which prevents a reliable 
estimation over a certain time interval due to these persis-
tent jumps having much higher values than usual.

4  Discussion

The uncorrelatedness between the predicted and the 
actual sample-sets, is understandable through the 
inspection of the deterministic linear difference-equa-
tion coefficients over different segments of FXR signals 
where the LTI-system approximation is made. The coef-
ficient values are highly volatile and vary greatly over 
different segments. Most coefficients take values within 
the range [− 10, 10]. However, the coefficients also 
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frequently take much greater values via sudden jumps. 
The occurrence of these sudden jumps, makes a predic-
tion analysis through difference-equation (DE) modeling 
irrelevant, as any accurate difference-equation-based 
estimation over a certain interval under the usual coef-
ficient values, is greatly overshadowed by the upcoming 
sudden jumps, and the associated large values that the 
coefficients will take. Hence, it appears that an accurate 
prediction analysis in the FXR market is greatly depend-
ent on the accurate estimation of these jumps and their 
associated dynamics, which is also supported by [28]. 
These sudden jumps in the coefficient values within vari-
ous segments of the FXR signal at hand, do not appear 

to be random, but rather chaotic, as also indicated by 
[13, 16]. If all coefficients would make jumps around 
the same time-sample, a DE modeling-based prediction 
would be more useful within the time interval between 
two subsequent coefficient jumps, which necessitates 
the knowledge of the usual period (or the distribution 
of periods) between two consecutive coefficient jumps, 
agreeing with the observation in [13]. However, as also 
indicated by the observations in [14], different coeffi-
cients can make jumps over different time intervals/sam-
ples, and this suggests that a precise modeling of the 
jump dynamics is more useful than a DE or a time-series 
based modeling for prediction. Therefore, confirming the 
statements and findings of [28, 31], the dynamics of the 
coefficient-jumps mostly determine the overall dynam-
ics of FXR signals, which are associated with certain 
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Fig. 9  Distribution of the correlation coefficient between the actual 
data and the estimated data (AUD/CAD) for a N = 120, M = 20, b 
N = 240, M = 20, c N = 480, M = 20, d N = 960, M = 20. None of the 

distributions are skewed towards − 1 or 1, but remain relatively uni-
form over the whole interval, which indicates no reliable estimation 
accuracy



Vol:.(1234567890)

Research Article SN Applied Sciences            (2023) 5:78  | https://doi.org/10.1007/s42452-023-05294-y

human-based social dynamics [43–45]. Hence, this study 
confirms the propositions and conclusions of [28, 31], 
and affirms the inherently chaotic and volatile nature of 
FXR signals in agreement with [12–16, 42].

5  Conclusion

The variation and volatility of the linear difference-equa-
tion coefficients that model a foreign exchange-rate (FXR) 
signal over certain time intervals where an LTI system 
approximation could be made, have been investigated. Ini-
tially, autoregressive (AR) time series modeling approach 
is used to make predictions for future values of FXR sig-
nals, over time windows that consist of 120, 240, 480, and 
960 samples respectively. Through a gradual slide of the 

time-windows, with a total of 400 slides, and each slide 
corresponding to 24 samples, a Monte-Carlo analysis is 
made. It is shown that an accurate prediction about the 
future values cannot be reliably done as the distribution 
function of the correlation coefficient (based on 400 trials) 
of the predicted data and the actual data turned to be cen-
tered around 0, which indicates that the predicted sample-
set have little to no similarity with the actual sample-set. 
Therefore, the use of a linear difference-equation with con-
stant coefficients (as in the case of AR time series) over var-
ious segments of FXR signals turned out to be of little to no 
use for the estimation of future values, indicating that the 
coefficients should be adaptively determined for the esti-
mation of each upcoming sample within a given segment 
of the signal, to increase the prediction accuracy. In this 
study, the degree of variation of the deterministic linear 
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Fig. 10  Distribution of the correlation coefficient between the 
actual data and the estimated data for a N = 120, M = 50, b N = 240, 
M = 50, c N = 480, M = 50, d N = 960, M = 50. None of the distribu-

tions are skewed towards − 1 or 1, but remain relatively uniform 
over the whole interval, which indicates no reliable estimation 
accuracy
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difference-equation coefficients have also been demon-
strated, for two foreign exchange-rate (EUR/USD, AUD/
CAD) signals, via segmentation of the overall exchange-
rate signals into smaller sample-sets, enabling LTI system 
representation. After solving for the local (LTI system) coef-
ficients of the signal via neural-network-modeling, and 
the analysis of all segments (sample-sets), the linear dif-
ference-equation coefficients are observed to be far from 
being constant or quasi-constant over different segments. 
Specifically, the coefficients are mostly observed to attain 
values within the range [− 10, 10], though, can occasionally 
but frequently assume values that are way greater than 
100 via sudden jumps. This shows that the coefficients are 
highly volatile, making prediction/estimation difficult via 
difference-equation modeling, as the seemingly chaotic 
sudden jumps appear to greatly influence the dynamics 
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Fig. 11  Hourly variation of the 4th, 8th, 12th, and 16th coefficient for the AUD/CAD exchange rate signal

Table 2  Probability distribution of the 4th, 8th, 12th, and 16th coef-
ficient for the AUD/CAD exchange rate

K P
(

a4 < K
)

P
(

a8 < K
)

P
(

a12 < K
)

P
(

a16 < K
)

1 0.5996 0.6243 0.5834 0.5059
3 0.8654 0.8784 0.8601 0.8342
5 0.9214 0.9257 0.9150 0.8988
10 0.9688 0.9709 0.9580 0.9548
30 0.9892 0.9925 0.9871 0.9849
50 0.9925 0.9946 0.9914 0.9882
100 0.9946 0.9957 0.9957 0.9946
300 0.9989 0.9978 0.9978 0.9978
600 1 0.9989 1 1
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of the underlying FXR system/market. Our conclusion sug-
gests that the prediction of future values of an FXR signal is 
quite difficult due to this volatility. Nevertheless, knowing 
the distribution functions and the uppermost/lowermost 
values of the linear difference-equation coefficients could 
help risk-management while trading in the FX market.
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