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AUTOMATIC TARGET RECOGNITION FOR SYNTHETIC APERTURE RADAR 

DATA 

ABSTRACT 

Automatic Target Recognition (ATR) in images generated from Synthetic Aperture 

Radar (SAR) has become a significant focus of research in contemporary society and 

represents a crucial avenue of inquiry within the realm of image processing. This study 

presents a thorough investigation of ATR techniques applied to SAR data. The widely 

used MSTAR dataset is utilized for evaluating the proposed methodologies. The initial 

stage of the study involves feature extraction techniques which aim to capture the relevant 

information from SAR data and reduce its dimensionality. The extracted features are used 

as inputs for various classifiers including Support Vector Machine (SVM). The 

performance of these classifiers is compared and evaluated based on their classification 

accuracy. To address the issue of speckle noise inherent in SAR imagery, mean and 

median filters are applied as preprocessing steps before feature extraction to investigate 

how noise reduction techniques affect the recognition accuracy of the ATR system. 

The expected outcomes of this research are twofold. First, it aims to determine the 

most effective feature extraction method and classifier combination for SAR-based ATR 

tasks. Second, it intends to assess the influence of noise reduction techniques on 

classification performance, providing insights into the trade-off between noise reduction 

and classification efficiency. By comprehensively analyzing feature extraction methods, 

classifiers, and the impact of noise reduction techniques, this study contributes to 

advancing the field of ATR for SAR data. The findings will aid researchers and 

practitioners in selecting suitable methodologies for SAR-based target recognition, 

ultimately enhancing the capabilities of SAR systems in various applications. 

Keywords: Automatic Target Recognition, Synthetic Aperture Radar, Feature Extraction, 

Support Vector Machine, Speckle Noise Reduction
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YAPAY AÇIKLIKLI RADAR VERİLERİ İÇİN OTOMATİK HEDEF TANIMA 

ÖZET 

Yapay Açıklıklı Radar (SAR) görüntülerde Otomatik Hedef Tanıma (ATR), SAR 

görüntü işleme ve hedef belirleme alanlarında önemli bir araştırma konusudur. Bu çalışma 

da, SAR verilerine uygulanan ATR teknikleri üzerine kapsamlı bir araştırma yapılmıştır. 

Önerilen metodlar yaygın olarak kullanılan MSTAR veri seti üzerinde uygulanmıştır. 

Çalışmanın ilk aşaması, SAR verilerinden ilgili öznitelikleri çıkarmayı ve boyut 

indirgemeyi amaçlayan öznitelik çıkarma tekniklerini içerir. Çıkarılan öznitelikler, Destek 

Vektör Makinesi (SVM) dahil olmak üzere çeşitli sınıflandırıcılar için girdi olarak 

kullanılır. Bu sınıflandırıcıların performansı, sınıflandırma doğruluğuna göre 

karşılaştırılır ve değerlendirilir. SAR görüntülerinde bulunan benek gürültüsü etkisini ele 

almak, gürültü azaltma tekniklerinin ATR sisteminin tanıma performansını nasıl 

etkilediğini araştırmak için öznitelik çıkarımından önce ön işleme adımları olarak 

ortalama ve medyan filtreler uygulanmıştır. 

Bu araştırmanın beklenen sonuçları iki yönlüdür. İlk olarak, SAR tabanlı ATR 

görevleri için en etkili öznitelik çıkarma yöntemini ve sınıflandırıcı kombinasyonunu 

belirlemektir. İkinci olarak, gürültü azaltma tekniklerinin sınıflandırma performansı 

üzerindeki etkisini değerlendirmeyi ve gürültü azaltma ile sınıflandırma verimliliği 

arasındaki başarım ilişkisini ortaya çıkarmaktır. Öznitelik çıkarma yöntemlerini, 

sınıflandırıcıları ve gürültü azaltma tekniklerinin etkisini kapsamlı bir şekilde analiz eden 

bu çalışma, SAR verileri için ATR uygulamasında seçilen yöntemler içerisinde en iyi 

performans ve öznitelik çıkarım metod çiftinin belirlenmesini sağlamıştır. Bulgular, 

araştırmacılara ve uygulayıcılara SAR tabanlı hedef tanıma için uygun metodların 

belirlenmesin de yardımcı olacaktır. 

Anahtar Sözcükler: Otomatik Hedef Tanıma, Yapay Açıklıklı Radar, Öznitelik Çıkarma, 

Destek Vektör Makinesi, Benek Gürültüsü Azaltma.
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I. INTRODUCTION 

A. Synthetic Aperture Radar (SAR) 

Synthetic Aperture Radar (SAR) is a remote sensing technology that uses radar to 

create images of the Earth's surface. The technology was first developed in the 1950s, but 

it has undergone significant development and refinement over the years. One of the key 

innovations in SAR technology was the development of the synthetic aperture, which 

allowed for the creation of high-resolution images using smaller antennae. This was 

accomplished by using the motion of the antenna to effectively synthesize a larger 

aperture, allowing for higher resolution images to be produced. 

SAR has been used for a wide range of applications, including mapping, 

surveillance, and environmental monitoring. It has also been used to study the Earth's 

oceans and ice caps, as well as to monitor the environment for natural disasters and other 

events. SAR can be used to detect targets by sending a radar pulse towards the region of 

interest (ROI) and analyzing the reflected signal. The reflected signal can be used to create 

a SAR image of the ROI, which can then be analyzed to detect the presence and location 

of targets within the image. 

SAR technology has continued to evolve over the years, with new innovations and 

advances being made in areas such as imaging modes, data processing, and image 

analysis. Today, SAR is an important tool for a wide range of applications, and it is likely 

to continue to play a key role in remote sensing and imaging in the future. 

One of the unique features of SAR is its ability to operate independently of weather 

and lighting conditions. This is because the radar signal is not affected by clouds or other 

obstacles, allowing it to produce images of the Earth's surface even in poor visibility 

conditions. Additionally, SAR has a high spatial resolution, meaning it can produce 

detailed images of objects or features on the ground. SAR can also be used to detect 

objects or features that are hidden or difficult to see with the naked eye, such as 
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underground utilities or changes in the Earth's surface. This is because the radar signal can 

penetrate through obstacles, allowing it to reveal hidden features. 

To produce high-resolution images, SAR uses a technique called synthetic 

aperture, which synthesizes a large antenna by taking advantage of the Doppler history of 

the radar echoes generated by the forward motion of the spacecraft. This allows for high 

azimuth resolution in the resulting image despite a physically small antenna. The process 

of generating a SAR image involves transmitting a pulse at each position as the radar 

moves and recording the return echoes in an echo store. 

Overall, SAR is a powerful tool for a variety of applications due to its ability to operate 

in any weather, its high spatial resolution, and its ability to reveal hidden features. 

1. SAR Mechanism of Working 

Synthetic aperture radar (SAR) is a radar technology that creates high-resolution 

images of the Earth's surface by sending and receiving signals with an antenna. The system 

calculates the distance to an object by measuring the time it takes for a transmitted signal 

to bounce back after hitting the object. SAR is used for various purposes, including 

mapping, surveillance, and remote sensing. The synthesis of a substantial antenna is made 

possible by utilizing the Doppler effect of radar echoes caused by the spacecraft's motion. 

This approach enables the resulting image to have a high level of detail in terms of 

horizontal resolution, even though the physical antenna is small. During the radar's 

movement, pulses are transmitted and the echoes they generate are stored in a designated 

location.  

Synthetic Aperture Radar necessitates a sophisticated assortment of navigational 

and control systems onboard the spacecraft. These systems rely on both Doppler and 

inertial navigation equipment to ensure accurate positioning. This holds true for sensors 

like ERS-1/2 SAR and ENVISAT ASAR, which maintain an orbit at a distance of roughly 

900km from Earth., a single transmitted pulse covers an area on the ground approximately 

5km long in the along-track (azimuth) direction. 
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Figure 1. The synthesized antenna by the forward movement of the shuttle. 

2. Scattering Mechanisms 

In SAR images, the intensity of the backscattered radar signal is depicted, with 

darker areas indicating low backscatter and brighter areas indicating high backscatter. 

Low backscatter implies that little of the radar energy was reflected, while high 

backscatter means that a significant portion of the radar energy was reflected. 

 

Figure 2. The scattering of radar signal by rough surface. 
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The amount of radar energy reflected to the sensor from a specific target area can 

be affected by various factors, including the size and electrical properties of the objects 

within the area, as well as the moisture content. Wetter objects tend to appear brighter in 

SAR images, while drier objects appear darker.  

 

 

Figure 3. Reflection of radar signals from different types of surfaces. 

However, smooth bodies of water, which act as flat surfaces and reflect the approaching 

beats absent from the sensor, will show up dark. In addition, the characteristics of the SAR 

pulses, such as the wavelength and polarization, and the observation angles can also 

influence the backscatter. 

3. SAR Azimuth resolution 

SAR utilizes a synthetic aperture technique to enhance the resolution of its antenna 

by mimicking the effect of a larger antenna. This is achieved by processing the signals 

and stages gotten from moving targets with a little radio wire in a complex way. This 

synthetic aperture method allows SAR to produce a beam with the same width as a radar 

of the same length within the azimuth course. The azimuth determination is at that point 
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improved to that of a radar with half the opening estimate. This is done using pulse 

compression, similar to the technique used for the range direction. 

 β = λ / D  The real beam width 

 Ls = β. R =∆L The Synthetic aperture length represents 

 the real resolution 

 βs = D / (2. R)   λ / 2. Ls The Synthetic beam width 

 ∆Ls = D / 2= βs. R The Synthetic resolution 

With, the wavelength (λ), the radar aperture (D), and the distance between the antenna and 

the object (R) are factors considered in the equation. 

For conventional radar from the antenna’s center, Azimuth resolution could be given as 

follow: 

                                                                 δy =
λ𝑐r𝑐

𝑦𝑙
                                                                  (1.1) 

where: 

δy: Azimuth resolution 

λc: Wavelength of the radar signal 

rc: Cross-range cell size 

yl: Antenna length in the cross-range direction 

Synthetic aperture technique enables the creation of an effect equivalent to use a large 

antenna by combining gotten signals and stages from moving targets with a little receiving 

wire, resulting in a synthetic aperture length that can project a beam with range width in 

the azimuth direction. This allows SAR to have an azimuth resolution that is half that of 
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real aperture radar, even at great distances or high altitudes.

 

Figure 4. The azimuth resolution of Synthetic aperture radar. 

4. Range resolution 

The range resolution of a synthetic aperture radar (SAR) system is a measure of 

the ability of the system to distinguish between two objects or features that are located at 

different ranges (distances) from the antenna. It is typically expressed in meters or 

centimeters and is contrarily relative to the transfer speed of the radar signal. The range 

resolution is determined by several factors, including the width of the transmitted pulse, 

the characteristics and size of the target being imaged, and the efficiency of the receiver. 

Range resolution can be calculated using the following formula: 

                                                                     δr =
C0

2τ 
                                                                  (1.2) 

δr: Range resolution 

C₀: Speed of light 

τ: Bandwidth (the width of the radar signal in Hz). 
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Range resolution is an important parameter in SAR imaging because it determines 

the level of detail that can be resolved in the image. A system with a high range resolution 

will be able to recognize between objects or highlights that are found near to each other, 

while a system with a low range resolution will not be able to distinguish between such 

objects or features. Range resolution is also affected by other factors such as the pulse 

duration and the pulse repetition frequency of the radar signal. In general, systems with 

shorter pulse durations and higher pulse repetition frequencies will have higher range 

resolutions. It is an important property of SAR systems and is used in a variety of 

applications including remote sensing, mapping, and surveillance. It is also an important 

factor to consider when selecting a SAR system for a specific application. 

Ground range resolution is a measure of the variation in ground range as it relates 

to slant range, and is represented by: 

                                                                        δx =
δr

sin θ 
                                                          (1.3) 

Where the incidents angle is represented by 𝜃. 

In a SAR system, the range resolution is determined by the width of the transmitted 

pulse, the characteristics and size of the target, and the performance of the receiver. A 

geometric model for SAR systems involves the space separating the antenna from the 

ground pixel is referred to as slant range, the distance between the ground track and the 

ground pixel is known as ground range as we can see in the figure 3. 
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Figure 5. SAR system geometric model. 

5. Confusion Matrix 

The study conducts multiple classification methods using various machine learning 

algorithms. A confusion matrix is created to showcase the performance of each model 

when applied to the given datasets. The confusion matrix stores the actual and predicted 

results of each class in the datasets. It is also known as an error matrix.  

The matrix is usually used to describe the performance of a binary classifier, although it 

can also be used for multiclass classification. It produces four primary outcomes: true 

positives, true negatives, false positives, and false negatives. 

 True positives (TP) are the cases when the classifier predicted the positive class, 

and it was correct. 

 True negatives (TN) are the cases when the classifier predicted the negative class, 

and it was correct. 

 False positives (FP) are the cases when the classifier predicted the positive class, 

but it was wrong. 
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 False negatives (FN) are the cases when the classifier predicted the negative class, 

but it was wrong. 

The usage of the confusion matrix enables the calculation of different measures of 

performance such as the accuracy score, precision, recall, specificity, etc. These metrics 

can help in understanding the trade-offs between different classification algorithms and 

help in choosing the best one for a specific problem. 

 

Figure 6. Confusion matrix actual and predicted results. 

The outcomes of the confusion matrix were used to compute four metrics to evaluate the 

performance of each model: 

 Accuracy: it pertains to the quantity of samples that the classifier has correctly 

categorized. 

                                        𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP +  TN

TP +  TN +  FP +  FN
                                          (1.4) 

 Precision: is a metric that helps to understand the ability of a classifier to not 

classify a negative sample as positive. One way to determine this is by dividing 

the number of accurately predicted positive observations by the overall number of 

predicted positive observations. 



 

10 

 

                                                          𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP +  FP
                                                  (1.5) 

 Recall: describes how many of the actual positive instances are being predicted as 

positive by the classifier, it helps to understand the ability of a classifier to find all 

the positive instances. 

                                                           𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

TP +  FN
                                                       (1.6) 

 F1-Score: It is a way to balance the trade-off between accuracy and completeness 

of information. If precision and recall are both high, then there will be a high F1-

score. One can achieve a maximum F1-score of 1, and the lowest possible value is 

0. A classifier with a high F1-score is considered to have a good balance between 

precision and recall. 

                                               𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2x(PrecisionxRecall)

Precision +  Recall
                                   (1.7) 

 

Figure 7. Precision vs Recall for a confusion matrix. 

The confusion matrix is beneficial as it allows us to identify the successes and failures of 

the model, particularly when the labels are unbalanced. In simpler terms, it allows us to 

gain more insight than just the model's overall accuracy. 
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B. Automatic Target Recognition 

The identification and detection of targets in synthetic aperture radar (SAR) 

images has become more widespread in the last years, but it remains a difficult task 

because of the significant amount of noise present in these images. Processing the 

automatic recognition of target in SAR images involves two stages: first, external factors 

that may cause false alarms (such as trees, cars, or buildings) must be removed from the 

images, and then feature extraction and classification algorithms are applied. 

Recently, the field of identifying and locating targets in SAR images has become 

a topic of interest. However, the high level of noise in these images can make this task 

challenging. The process of Automatic Target Recognition (ATR) on SAR images 

involves two steps. The first step is to eliminate external factors such as trees, buildings, 

and cars that can lead to false alarms in the images. During the second phase, the 

application of feature extraction and classification algorithms takes place. A variety of 

methods, including those from computer vision and those specifically designed for SAR 

data, have been implemented to enhance the performance of target recognition using SAR 

data. 

The process of identifying and understanding targets in SAR images can be broken 

down into three stages: identifying the presence of a target, determining the category of 

the target, and identifying specific instances of the same category of target. The first stage, 

target identification, simply determines the difference between targets in the image. The 

second stage, target categorization, uses this initial identification to predict the class of the 

target. The final stage, target recognition, uses the information from the previous two 

stages to confirm the specific identity of a target within a class. It is important to note that 

the term "target recognition" is often used specifically to refer to this final stage, the 

highest level of understanding a target in an SAR image. 

 

Figure 8. Steps of the target recognition process. 
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In summary, ATR using SAR data is a process that involves two main stages: first, 

removing external factors that may cause false alarms, and second, using feature 

extraction and classification algorithms to accurately identify targets in the SAR images. 

This process can be further divided into three levels: discrimination, classification, and 

recognition. These methods are evaluated on two sets of target configurations: standard 

and extended operation conditions. The standard conditions typically include ten classes 

of targets, while the extended conditions involve variations in acquisition geometry, target 

state, and local target deployment, as well as intraclass variability. 

C. MSTAR Dataset 

The Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset 

is employed to assess the performance of algorithms for identifying targets automatically 

using synthetic aperture radar imagery. It consists of images of military vehicles captured 

from different angles, as well as clutter and noise. The MSTAR dataset is extensively 

utilized in studies on automatic target recognition methods. and has been used in multiple 

benchmark studies. It is available for download from the Defense Technical Information 

Center (DTIC) website. 

This dataset is a collection of synthetic aperture radar images that are used to 

evaluate algorithms based on automatic target recognition. These images contain military 

vehicles taken from different angles, as well as clutter and noise. The dataset is widely 

used in research on ATR algorithms and has been used in multiple benchmark studies. 

The MSTAR dataset is publicly available and can be downloaded from the Defense 

Technical Information Center (DTIC) website. The MSTAR dataset comprises of X-band 

Synthetic Aperture Radar images that have a resolution of 1x1 ft, can rotate 360-degrees 

with an interval of 1 degree and has an image dimension of 128x128 pixels. The targets 
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frequently found in the MSTAR dataset are illustrated in Figure 2

 

Figure 9. Standard MSTAR targets. (a) Visual image. (b) SAR image. 

D. Literature Review 

Template matching, a traditional method, has been found to be inadequate for 

detecting targets in Synthetic Aperture Radar (SAR) images. The main issue is that noise 

present in SAR images can alter the appearance of targets, making it difficult to identify 

them. Researchers have attempted to tackle this problem by utilizing different techniques 

such as obtaining local and global features, using sparse representations, and 

implementing canonical correlation analysis of sparse matrices to fuse features at different 

scales. These fused features are then used for target recognition. Liu et al. 2013 used SAR 

images to extract features, which were evaluated using multiple classifiers and then 

combined for improved classification results. 

The Automatic Target Recognition (ATR) of SAR images is a persistent challenge. 

Obtaining raw SAR images is a significant difficulty and the images themselves often 

contain high levels of noise. The MSTAR dataset is commonly employed by researchers 

for conducting ATR tasks involving the recognition and acquisition of both still and 

moving targets, which was introduced by Liu and Li in 2013. The MSTAR dataset has 

been used in several studies, with varying levels of accuracy. Novak et al. 1998 achieved 

66.2% and 77.4% accuracy for 20-class and 10-class classification respectively. Martone 

et al. 2009 applied k-means clustering to identify objects in motion within areas covered 
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in trees. Gorovyi and Sharapov achieved 90.7% accuracy on the MSTAR dataset using 

SVM. Techniques such as speckle noise reduction and feature extraction are commonly 

used in these studies. 

In this study, using Python coding program, different features extractions were used 

on ten classes of data provided by the benchmarking dataset MSTAR, which has 96x96 

pixel size on different categories for training then testing a classification model. First, we 

apply different preprocessing algorithms to our data then we extract the most important 

feature using different types of features extraction before we train our model using 

different classifiers. Moreover, the reduction of speckle noise is done by applying a mean 

and median filter. Finally, a comparison between different classifiers. 
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II. SPECKLE NOISE REDUCTION AND SAR DATA FEATURES 

EXTRACTION 

A.  Speckle Noise Reduction 

1. Introduction 

When a radar beam hits a surface that has small variations in its texture on the 

scale of the radar wavelength, to identify objects in motion within areas covered in trees. 

The signal that is reflected consists of various waves that originate from several scatterers 

present in a particular resolution cell. Because of the roughness of the surface, the distance 

between the scatterers and the receiver changes, which means that the waves are no longer 

in phase with each other. If the waves combine constructively, the signal is strong, but if 

they combine destructively, the signal is weak. The production of a SAR image is achieved 

through the consolidation of radar signals from numerous pulses. This results in variations 

in the intensity of each pixel, called speckle, which can appear as a granular pattern. This 

can make it difficult to extract information from SAR images, especially in areas that are 

heterogeneous. Despite this, speckles are still considered to be noise in most image 

processing applications. 

Speckle noise is a common issue in synthetic aperture radar (SAR) imagery, which 

could pose a challenge in accurately identifying and categorizing items. It is caused by the 

interference of multiple reflections of the radar signal of objects in the image. Thus, the 

overall appearance is granular due to the collective contribution of numerous elementary 

scatterers within each resolution cell. Speckle noise can significantly degrade the quality 

of SAR images, making it difficult to distinguish delicate details and features. 

There are several methods that have been developed to reduce speckle noise, 

including conventional techniques like mean and median filtering and adaptive techniques 

such as the Lee, Kuan, and Frost filters. Generally, these techniques employ a specified 

filter window to approximate the regional noise variation in a speckled picture and employ 
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a distinct filtering course. While these methods can effectively reduce noise in 

homogenous areas, they can also lead to over-smoothing and loss of detail in areas 

consisting of diverse elements. The Lee filter is a frequently used point of comparison. 

due to its ability to effectively reduce noise while maintaining image sharpness. Wavelet-

based denoising techniques have been shown to be effective in reducing speckle noise in 

SAR images. These algorithms involve transforming the SAR image using a logarithmic 

transformation and then applying shrinkage to the wavelet coefficients. Some studies have 

considered combining the use of wavelet shrinkage denoising methods with an edge 

detector and showed an effectiveness reducing speckle noise while preserving small 

details and edges in the SAR image. 

2. Speckle Pre-filtering 

Two types of methods are used to reduce or eliminate speckle noise in images. The 

first method is to take multiple images or "looks" by combining various polarization states 

and sections of the azimuth spectral bandwidth, it is possible to create an averaged version 

which is known as multiple-look processing. The second method involves using digital 

image processing techniques to smooth the image after it has been formed. There are two 

main techniques of digital filtering in the frequency domain, such as the Wiener filter or 

wavelet transformation. 

In the realm of image enhancement, the second technique takes a captivating journey 

through the spatial domain. Here, the ethereal task of noise elimination is accomplished 

through the artistry of averaging or the alchemy of statistically molding the values of 

neighboring pixels. A tapestry of contrasting approaches is skillfully woven by the 

venerable Hervet E., Fjørtfort, R., Marthon, P., and A. Lopes, offering a delightful 

juxtaposition between the frequency domain's enchanting wavelet-based filters and the 

spatial domain's majestic statistical filters. Our study embarks on the captivating path of 

the second approach, as we delve into the splendid realm of digital filters reigning over 

the spatial domain, their noble purpose being to quell the unruly speckles adorning the 

realm of SAR imagery. 
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3. Mean Filter 

Mean filter is a type of low-pass filter that is used to smooth an image where the 

pixel values can be substituted with a computed average value derived from the 

surrounding pixel values. It is applied by convolving the image with a kernel that has all 

its values set to 1 and dividing the sum by the total number of elements in the kernel. The 

size of the kernel determines the amount of smoothing applied to the image. 

To reduce speckle noise in SAR data using mean filter, the mean filter is applied to 

the SAR image using a kernel of a suitable size. The kernel is moved over the image, and 

for each pixel, the average value of the neighbouring pixels is calculated and replaced with 

the original pixel value. The aforementioned procedure is replicated iteratively across each 

individual pixel within the image, thereby producing a smoothed image which exhibits a 

diminished amount of speckle noise. 

 

Figure 10. Mean filter applied to SAR image of 2S1 battle tank. 

 

4. Median Filter 

The median filter is a prevalent non-linear image filtering methodology utilized for 

noise removal in images, including those obtained from Synthetic Aperture Radar (SAR) 
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systems. The underlying principle of the median filter involves substitution of the value 

of a designated pixel in an image with the median value computed from the pixel set within 

a defined neighbourhood around that pixel. The neighbourhood is typically defined as a 

square window of a certain size, and the median filter is applied to each pixel in the image 

by sliding this window over the entire image. 

The main advantage of the median filter is its ability to effectively remove impulse 

noise, also known as "salt and pepper" noise, which is characterized by the presence of 

random pixels with very high or very low values. This type of noise is common in SAR 

images due to the presence of outliers, such as ground clutter or other types of interference. 

The median filter, along with its various adaptations, operates by substituting the 

central pixel of a window that is sliding through an image with the median intensity of all 

the pixels located within that window. The filter in question exhibits efficacy in 

eliminating impulse or short-duration noise; nevertheless, it is not optimally designed for 

attenuating speckle noise. Common issues with this filter include blurring of edges, 

erasure of thin linear features, and distortion of object shapes. 

 

Figure 11. Median filter applied to SAR image of 2S1 battle tank. 
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B. SAR Data Features Extraction  

1. Introduction 

Feature extraction is the procedure of recognizing and obtaining meaningful 

information from raw data, such as images or signals. This information can be used for 

various tasks such as pattern recognition, classification, and anomaly detection. In the 

field of synthetic aperture radar (SAR) data, feature extraction is used to identify and 

extract specific features of interest, such as buildings or vehicles, from the radar images. 

The history of feature extraction dates back to the early days of image processing 

and computer vision, with early techniques such as edge detection and texture analysis. 

With the advent of machine learning and deep learning, feature extraction has become 

more sophisticated and powerful, with methods such as convolutional neural networks 

(CNNs) and autoencoders being used to extract high-level features from complex data.  

The importance of feature extraction for SAR data lies in its ability to extract relevant 

information from the data, making it easier for downstream tasks such as classification 

and target detection. This can improve the accuracy and efficiency of these tasks, as well 

as enabling the use of SAR data in new applications, such as change detection and urban 

planning. Additionally, feature extraction can serve as a technique to lower the 

dimensionality of data, thereby rendering it more manageable for storage and analysis. In 

many cases, the raw input data is high-dimensional and contains redundant or irrelevant 

information. For example, in image classification tasks, the raw pixel values of an image 

are high-dimensional and contain information about the lighting conditions, camera noise, 

and other factors that are irrelevant to the classification task. Therefore, feature extraction 

techniques are used to transform the raw input data into a lower-dimensional feature space 

that captures the essential characteristics of the data. A diverse range of techniques can be 

employed for executing feature extraction, including statistical methods, transform-based 

methods, and deep learning methods. Frequently utilized in various fields, statistical 

techniques such as Principal Component Analysis (PCA) and Linear Discriminant 

Analysis (LDA) hold prominence to reduce the dimensionality of the data and extract 

representative features. Transform-based methods such as discrete wavelet transform 

(DWT) and Fourier transform (FT) are used to decompose the input data into a set of 
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frequency components that capture the essential characteristics of the data. The use of 

deep learning methodologies, specifically convolutional neural networks (CNNs), is a 

widely adopted strategy for extracting features in image classification endeavours. These 

methods use a hierarchy of convolutional layers to learn increasingly complex features 

from the input data. The features learned by these networks are often more discriminative 

and representative than the features extracted by traditional feature extraction methods. 

Before classifying SAR data, the process of feature extraction is of critical 

importance in data preparation for the classification task. The goal of feature extraction is 

to extract relevant information from the data that can be used to distinguish between 

different classes. This process can involve extracting various types of features, such as 

texture, shape, and intensity, that can be used to represent the data. Once the relevant 

features have been extracted, they can be used as input to a classifier, which is a model 

that assigns a label or class to each input. The classifier is trained on a set of labelled data, 

where the inputs are the extracted features, and the outputs are the class labels. During the 

training process, the classifier learns to associate specific feature patterns with specific 

class labels. When the classifier is used to classify new data, it takes the extracted features 

as input and assigns a class label based on the patterns it learned during training. By 

extracting relevant features before classification, the classifier is able to make more 

accurate and efficient predictions. 

2. Principle Component Analysis (PCA) 

Principal Component Analysis is a method created by Karl Pearson in 1901, aims 

to reduce the number of variables by identifying a set of uncorrelated factors known as 

Principal Components from a larger set of data that are linear combinations of the original 

variables. It is a technique for feature extraction in which the original data is transformed 

into a new set of variables. These new variables are uncorrelated and ordered by the 

amount of variance they explain in the data. PCA can be used for dimensionality 

reduction, noise reduction, and data visualization. Figure 7 illustrates the concept of 

Principal Component Analysis. 
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Figure 12. Illustration of Principal Component Analysis concept. 

In the context of synthetic aperture radar (SAR) data classification, PCA can be used as a 

pre-processing step to extract relevant features from the radar data. This can help improve 

the classification performance by reducing the dimensionality of the data and removing 

noise and redundancy. The principal components can also be used as input features to a 

classifier. However, it's important to note that PCA is categorized as an unsupervised 

method that doesn't guarantee the identification of the most distinctive characteristics for 

classification purposes. The utilization of PCA in various fields, such as social science 

and space science, has been utilized for the goal of reducing data size and identifying key 

features. While it has been utilized in SAR image classification by remote sensing experts, 

it has not been commonly employed in the field of automatic target recognition. In this 

study, PCA is implemented in the context of SAR-ATR using the MSTAR data set. 

PCA is a technique that is used to transform highly correlated image bands in SAR 

data into a set of linearly uncorrelated variables, which can then be used to extract 

meaningful information from the image bands. Let x be the pixel vector of the image, 

which can be represented as 𝑋𝑛 = [𝑥𝑛1 𝑥𝑛2. . .  𝑥𝑛𝐹]
𝑇 with each pixel location in the 
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hypercube having S pixel values 𝑥1, 𝑥2, …, 𝑥𝑆. Here, n represents the 𝑛𝑡ℎ pixel number 

from S. The hypercube is denoted by D, with a size of  𝐹 × 𝑆, where 𝑆 = 𝑋 × 𝑌. To 

calculate the mean vector, M, of all the image vectors, we use the equation: 

                                                              𝑀 =
1

𝑆
∑ 𝑋𝑛

𝑆

𝑛=1
.                                                         (2.1) 

To calculate an approximation of the covariance matrix we use the following equation: 

                                                                   𝐶 =
1

𝑆
𝐼𝐼𝑇 .                                                                  (2.2) 

Where the variable I represents a zero-mean image, which is obtained by subtracting the 

mean vector M from the pixel vector of the SAR image. Specifically, it is represented as 

𝐼 = [𝐼1 𝐼2. . .  𝐼𝑛] , where 𝐼𝑛 = x𝑛 −  𝑀 = [𝑥𝑛1 𝑥𝑛2. . .  𝑥𝑛𝐹]
𝑇. Next, to perform eigenvalue 

decomposition, the covariance matrix C is calculated, which is given by: 

                                                                   𝐶 = 𝑉𝐸𝑉𝑇 .                                                                (2.3) 

In this process, the matrix V is formed using the F-dimensional eigenvectors 

𝑉1, 𝑉2, … , 𝑉𝐹 to create an orthonormal matrix. Similarly, the matrix E, which is a diagonal 

matrix, is formed by arranging the eigenvalues 𝐸1, 𝐸2, … , 𝐸𝐹  of the covariance matrix C. 

These eigenvectors are also called principal components (PCs). To create a new feature 

subspace, k eigenvectors are selected, resulting in an F × k dimensional matrix called W, 

where k is less than or equal to F and is often much smaller than F. Numerous 

methodologies exist for selecting k eigenvectors, including sorting them in a descending 

order and selecting the top k principal components, engaging in divergence or 

discriminant analysis, among other approaches. The resultant vector Y, comprising 

Principal Component Analysis transformed pixel values, can be attained through the 

multiplication of the transposed matrix W and the initial pixel vector I as follow: 

                                                                  𝑌 = 𝑊𝑇 × I.                                                              (2,4) 

3. Kernel Principal Component Analysis (KPCA) 

Kernel Principal Component Analysis (KPCA) is a prominent method utilized for 

the purpose of feature extraction within various domains of research, as for Synthetic 

Aperture Radar (SAR) data classification. SAR data is typically high-dimensional and 
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non-linear, making it challenging to classify using traditional methods. KPCA can be used 

to transform the high-dimensional SAR data into a lower-dimensional space while 

preserving important non-linear relationships between the data points. In KPCA feature 

extraction for SAR data classification, the SAR data undergoes an initial process of 

mapping into a feature space of high-dimensionality, employing a non-linear 

transformation, and then the principal components of the transformed data are computed 

in this space. These principal components can then be used as features for classifying the 

SAR data. 

The importance of KPCA feature extraction for SAR data classification is: 

 Improved classification accuracy: By transforming the high-dimensional 

and non-linear SAR data into a lower-dimensional space, KPCA can help in 

improving the accuracy of SAR data classification algorithms. 

 Better feature representation: KPCA can provide a better representation of 

the SAR data compared to linear feature extraction methods, making it easier 

to identify patterns and relationships in the data. 

 Improved computational efficiency: KPCA can reduce the dimensionality of 

the SAR data, which can result in improved computational efficiency for 

classification algorithms. 

Kernel methods are a type of machine learning method that that can address 

nonlinearity in data. These techniques facilitate the analysis of data by projecting it onto 

multidimensional spaces, which enhance the efficacy of linear procedures. By doing so, 

Kernel methods have the capacity to identify non-linear patterns present within the given 

data while still maintaining the computational simplicity of matrix algebra. In the context 

of process monitoring, kernel learning is primarily used in the feature extraction step of 

analysing plant data. Linear dimensionality reduction is the only option provided by 

standard PCA, which may not be effective if the data has complex structures that cannot 

be accurately represented within a linear subspace. Fortunately kernel PCA offers a 

solution by allowing for nonlinear dimensionality reduction. This generalisation of 

standard PCA enables the analysis of more complex data strictures. 
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Assuming the presence of a non-linear transformation function, denoted as ɸ(x), 

which facilitates the mapping of data points within a feature space possessing D 

dimensions, with M normally surpassing D. By performing a projection of individual data 

points 𝑥𝑖 onto a designated point ɸ(𝑥𝑖), it becomes feasible to apply standard PCA in the 

newly derived feature space. Nevertheless, this methodology has been observed to be 

computationally demanding and ineffective. In order to mitigate the aforementioned 

concern, kernel methods can be employed as a means of optimizing computational 

efficiency. 

Initially, it is postulated that the newly acquired traits have been obtained through 

projection have a mean value of zero: 

                                                          
1

𝑁
 ∑ɸ(

𝑁

𝑖=1

𝑥𝑖) = 0.                                                           (2,5)  

We compute the covariance matrix as an M x M matrix of the projected features as follow:  

                                                     𝐶 =
1

𝑁
 ∑ɸ(

𝑁

𝑖=1

𝑥𝑖)ɸ(𝑥𝑖)
𝑇.                                                    (2,6) 

Herein, the covariance matrix's eigenvalues and eigenvectors are disclosed: 

                                                             𝐶𝑣𝑘 = 𝜆 𝑣𝑘                                                                     (2,7) 

Where k 1, 2, 3…, M. from the equations of covariance (2,6) and eigenvectors (2,7) we 

get:  

                                              
1

𝑁
 ∑ɸ(

𝑁

𝑖=1

𝑥𝑖){ɸ(𝑥𝑖)
𝑇𝑣𝑘} = 𝜆𝑘 𝑣𝑘 ,                                          (2,8) 

Which we can write as: 

                                                     𝑣𝑘 =∑𝑎𝑘𝑖

𝑁

𝑖=1

ɸ(𝑥𝑖).                                                               (2,9) 

By replacing the value of 𝑣𝑘 in the equation (2,8) with the value obtained from 

equation (2,9) we get: 

                        
1

𝑁
 ∑ɸ(

𝑁

𝑖=1

𝑥𝑖)ɸ(𝑥𝑖)
𝑇∑𝑎𝑘𝑖

𝑁

𝑖=1

ɸ(𝑥𝑖) = 𝜆𝑘  ∑𝑎𝑘𝑖

𝑁

𝑖=1

ɸ(𝑥𝑖) .                         (2,10) 
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The definition of the kernel function is given by: 

                                                  𝑘(𝑥𝑖 , 𝑥𝑗) = ɸ(𝑥𝑖)
𝑇ɸ(𝑥𝑗)                                                     (2,11) 

If we multiply by the transpose of ɸ(𝑥𝑙) both sides of the equation (2,10) we will 

have: 

                             
1

𝑁
∑𝑘(𝑥𝑙, 𝑥𝑖)

𝑁

𝑖=1

∑𝑎𝑘𝑗𝑘(𝑥𝑖 , 𝑥𝑗)

𝑁

𝑘=1

= 𝜆𝑘∑𝑎𝑘𝑗𝑘(𝑥𝑙, 𝑥𝑖)

𝑁

𝑖=1

.                     (2,12) 

The matrix notation can be represented as follow: 

                                                            𝐾2𝑎𝑘 = 𝜆𝑘𝑁𝐾𝑎𝑘,                                                        (2,13) 

Where 

                                                            𝐾𝑖,𝑗 = 𝑘(𝑥𝑖 , 𝑥𝑗)                                                            (2,14) 

The vector 𝑎𝑘 is a column vector of size N, with 𝑎𝑘𝑗 as its elements. 

                                                      𝑎𝑘 = [𝑎𝑘1 𝑎𝑘2. . . 𝑎𝑘𝑁]
𝑇                                                    (2,15) 

We can solve 𝑎𝑘 by 

                                                               𝐾𝑎𝑘 = 𝜆𝑘𝑁𝑎𝑘                                                           (2,16) 

The concluded kernel principal components can be obtained using: 

                                            𝑦𝑘(𝑥) = ɸ(𝑥)
𝑇𝑣𝑘 =∑𝑎𝑘𝑖𝑘(𝑥, 𝑥𝑖)

𝑁

𝑖=1

                                      (2,17) 

In case the projected dataset ɸ(𝑥𝑖) doesn’t have a mean of zero, we can use the Gram 

matrix 𝐾̃ instead of the kernel matrix K. This Gram matrix is obtained by: 

                                           𝐾̃ = 𝐾 − 1𝑁𝐾 − 𝐾1𝑁 + 1𝑁𝐾1𝑁                                             (2,18) 

The matrix 1N is an N × N matrix where each element is equal to 
1

𝑁
. The benefits of kernel 

methods lie in the fact that it obviates the requirement of explicitly calculating the 

transformation ɸ(𝑥𝑖). Instead, we can construct the kernel matrix directly from the 

training dataset {𝑥𝑖}. There are two widely used kernels, namely the polynomial kernel 

                                                            𝑘(𝑥, 𝑦) = (𝑥𝑇𝑦)𝑑                                                        (2,19) 

Or  

                                                           𝑘(𝑥, 𝑦) = (𝑥𝑇𝑦 + 𝑐)𝑑                                                  (2,20) 
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where the constant c is greater than 0, and the gaussian kernel is represented by: 

                                                              𝑘(𝑥, 𝑦) = 𝑒
−
‖𝑥−𝑦‖2

2 𝜎2                                                    (2,21) 

where σ is parameter. 

Kernel PCA dimensionality reduction can be performed in the following steps: 

 Construct the kernel matrix K from the input dataset {𝑥𝑖} using the equation (2,14) 

 Calculate the Gram matrix  𝐾̃ using the equation (2,18) when the projected dataset 

{ɸ(𝑥𝑖)} does not have zero mean. 

 Use equation (2,16) to find the vectors 𝑎𝑖, with the substitution of K with  𝐾̃. 

 The principal components of the kernel, denoted as 𝑦𝑘(𝑥), can be computed 

through the utilization of equation (2,17). 

4. Independent Component Analysis (ICA) 

The utilization of Independent Component Analysis (ICA) as a feature extraction 

technique has become prevalent in the study of Synthetic Aperture Radar (SAR) data 

analysis. The goal of ICA is to find a set of independent, non-Gaussian signals that are 

mixed in the SAR data. The technique assumes that the underlying signals in the data are 

statistically independent, and it aims to separate these signals by maximizing their 

independence. The ICA algorithm starts by assuming that the mixed signals are linear 

combinations of the independent sources. It then estimates the mixing matrix and the 

independent sources by minimizing the mutual dependence between the signals. Once the 

independent sources have been estimated, they can be used as features for further analysis, 

such as classification or target detection. ICA has been found to be particularly useful for 

SAR data because it can effectively separate the signals from different scatterers in the 

scene, such as buildings and vegetation, which improves the interpretability of the data. It 

is also robust to noise and can handle non-Gaussian distributions. By applying ICA to 

SAR images from MSTAR data before classification, it is possible to extract useful 

features that are highly correlated with specific targets, such as building or vehicle 

signatures. These features can then be used to train a classifier, such as a neural network, 

to accurately identify and classify the different targets in the scene. Additionally, ICA is 

robust to noise, which is particularly important in MSTAR data, where the signals of 
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interest may be weak or obscured by noise. As a result, ICA can be used to enhance the 

ratio of signal to noise within the given data, which leads to better classification 

performance. 

The generative approach applied in Principal Component Analysis (PCA), wherein 

the latent variables are mixed to obtain observations, which are independents components 

can be concluded by assuming we have m linear mixture that we can observe 𝑥1, 𝑥2, … ,

𝑥𝑚 of n independent components.  

                                                 𝑥𝑗 =  𝑎𝑗1𝑠1 + 𝑎𝑗1𝑠1 +⋯+ 𝑎𝑗𝑛𝑠𝑛                                       (2.22) 

The mixtures 𝑥𝑗 and the independent components 𝑠𝑘 each of them is a random variable. 

We can represent the equation: 𝑥 = 𝐴𝑠 using the vector-matrix notation. The estimation 

of the latent variable 𝑠𝑖 in ICA is characterized by the absence of direct observation, 

thereby necessitating concurrent estimation of the mixing matrix A. The underlying 

principle of ICA posits that the unobserved variables 𝑠𝑖 exhibit statistical independence. 

This implies that the joint probability density function can be factored into the product of 

their corresponding marginal densities: 

                                                          𝑃(𝑠) =∏𝑃𝑖 (𝑠𝑖) 

𝑁

𝑛=0

                                                       (2.23) 

According to the principles of probability theory, the central limit theorem posits that 

when specific criteria are satisfied, the distribution of the summation of unconnected 

random variables tends towards a Gaussian or normal distribution. This theorem can be 

employed to postulate that a combination of 𝑠𝑖 variables exhibit greater conformity to a 

Gaussian distribution as opposed to each variable taken individually. Therefore, A viable 

approach for estimating the independent components entails minimizing the Gaussian 

distribution of the variables 𝑠𝑖. This can be achieved by employing non-Gaussian 

measures, such as kurtosis and negentropy, to assess the degree of non-Gaussianity. An 

alternative method, that derives inspiration from information theory, entails harnessing 

the notion of differential entropy, with the objective of reducing mutual information. 

                                              𝐼(𝑦1, 𝑦2, … , 𝑦𝑛) =∑𝐻(𝑦𝑖) − 𝐻(𝑦)

𝑛

𝑖=0

                                   (2.24) 
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Mutual information is a metric that quantifies the level of interdependence between 

random variables, taking into account higher-order statistical properties. The 

aforementioned expression is represented as the Kullback-Leibler divergence between the 

joint density function 𝑓(𝑦) and the product of its corresponding marginal density 

functions. It has been observed that there is a significant relationship between negentropy, 

mutual information, projection pursuit, and their interconnectedness. Since negentropy is 

invariant for invertible transformation that minimizes mutual information similar to 

identifying is maximized. The endeavour of determining a singular constituent that 

optimizes the measure of negentropy is classified as a specific manifestation of projection 

pursuit and can be construed as a univariate feature. 
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III. SAR DATA CLASSIFICATION 

A. Introduction 

Classification is a fundamental approach utilized to partition a provided dataset into 

discrete classes, leveraging observable features derived from the training set. In the 

context of Synthetic Aperture Radar (SAR) imagery, this process involves the discernment 

and categorization of objects or targets present within the image into their respective 

classes. Specifically, the classification of marine targets within a SAR image is of interest, 

with the objective being to identify and allocate them based on discernible features. 

Nonetheless, the accurate classification of targets in SAR imagery remains a significant 

hurdle due to the inherent limitations in the quality of SAR images, leading to challenges 

associated with misclassification. The classification algorithm may encounter difficulties 

in discerning between relevant and non-relevant features, thereby impeding the accurate 

determination of target types for appropriate classification. Additionally, identifying 

similar-looking targets poses an additional challenge in SAR image classification, as 

distinguishing features that differentiate between such targets may have been suppressed 

or overlooked during the noise reduction process employed by the classifier. 

Consequently, the classification of similar-looking targets in SAR images remains an 

active area of research. The literature offers various approaches to SAR image 

classification, each presenting its own merits and limitations. These approaches will be 

comprehensively examined in the subsequent subsections, allowing for a detailed 

exploration of their strengths and weaknesses. 

Classification involves predicting the class labels of unknown patterns based on 

observations. Consider a set of observations {(𝑥1, 𝑦1), . . . , (𝑥𝑁, 𝑦𝑁)} of q-dimensional 

patterns 𝒳 =  {𝑥}𝑖=1
𝑁 ⊂ ℝ𝑞 , and a corresponding set of labels 𝒴 =  {𝑦𝑖}𝑖=1

𝑁  ⊂  ℝ𝑞, the 

objective of classification is to memorize a useful demonstrate 𝑓 that can anticipate the 

class label 𝑦 for a new pattern 𝑥 with reasonable accuracy. Patterns without labels must 
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be assigned labels of similar known patterns, such as those that are close in distance, 

belong to the same distribution, or fall on the same side of a decision boundary. However, 

learning from observations can be challenging due to noisy training data, unknown 

important features, difficulties in defining similarity between patterns, and inadequate 

descriptions of observations using simple distributions. Moreover, learning simple 

functional models can be challenging as classes may not be separable by linear decision 

boundaries or simple mathematical equations. 

Automatic target recognition (ATR) in SAR images can be a challenging task due 

to the variability in the radar backscatter characteristics of targets under different 

conditions and the presence of other types of clutter in the image. Classification can be 

used to aid in the ATR process by identifying specific targets of interest within the SAR 

image based on their radar backscatter characteristics. The basic idea behind 

classification-based ATR is to train a classifier on a labeled dataset of SAR images 

containing known targets, such as the MSTAR dataset. The classifier can then be applied 

to new, unlabeled SAR images to identify potential targets. The classifier can be trained 

to recognize different types of targets by utilizing the unique radar backscatter 

characteristics of each one of them. For example, different types of tanks have different 

radar cross-section (RCS) signatures, which can be used to distinguish them from other 

types of clutter. Additionally, targets can be viewed from different angles, which can also 

affect their RCS signature. Once the classifier is prepared, it can be connected to unused 

SAR pictures to recognize ranges of the image that match the radar backscatter 

characteristics of the tanks of interest. These areas can then be flagged as potential targets 

for further analysis. 

Several pre-processing steps that are typically performed on SAR data before 

classification to improve the accuracy of the classification results. Some of these pre-

processing steps include radiometric calibration since SAR data may contain radiometric 

errors due to antenna gain fluctuations, atmospheric attenuation, and other factors. 

Radiometric calibration is performed to normalize the data and correct these errors. 

Speckle filtering, the coherent nature of the SAR imaging process can reduce the overall 

quality and clarity of the image. This issue could be solved by removing the high-
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frequency noise in the image while preserving the useful information. This is done by 

applying a spatial or frequency domain filter to the image in the spatial domain, to smooth 

and improve the image quality. SAR data is affected by the topography of the area being 

imaged, and terrain correction is performed to remove these effects and produce a more 

accurate image. Feature extraction is also an important step before the classification 

process. Since SAR data contains a large amount of information, feature extraction 

techniques are used to recognize and extricate the foremost important highlights for the 

classification task. The main purpose of feature extraction is to transform the raw input 

data into a set of representative and discriminative features that can be used by a 

classification algorithm to accurately classify the input data. The extracted features should 

capture the essential characteristics of the input data and should be invariant to irrelevant 

variations in the data. By performing these pre-processing steps, the SAR data can be 

prepared for classification, and the resulting classification results will be more accurate 

and reliable. 

B. K-Nearest Neighbors 

The k-nearest neighbour decision rule (k-NN) is a prominent classification 

algorithm utilized in the domain of statistical pattern recognition. The methodology 

encompasses representation of each class through a determined collection of exemplars a 

set of training pattern vectors that correspond to that particular class. When classifying a 

novel vector, the k-nearest neighbours are identified from the pool of prototype vectors, 

and the resulting class label is assigned through a majority voting scheme. To prevent the 

occurrence of overlaps in class regions requiring resolution by the process of tying, it is 

advisable to utilize an odd value for variable k. Whilst the k-NN (k-Nearest Neighbours) 

rule possesses a relatively uncomplicated and refined process, its error rate has been 

observed to be low in actual applications. As the quantity of prototype samples increases, 

the asymptotic error rate approaches the optimal Bayes error rate with a corresponding 

increase in k. Henceforth, the k-nearest neighbour algorithm serves as a conventional 

benchmark technique for assessing the performance of novel classifiers, including neural 

networks. 
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K-Nearest Neighbours k-NN is a simple, non-parametric classifier that is often used 

for image classification tasks, including Synthetic Aperture Radar (SAR) images. The 

basic idea behind the k-NN classifier is to identify the k-number of closest "neighbours" 

to a given data point in feature space, and then classify the point based on the majority 

class of those neighbours. In the case of SAR image classification, the k-NN algorithm 

would first convert the image pixels into feature vectors, which represent the relevant 

characteristics of the image. These feature vectors are then used to identify the k-nearest 

neighbours to a given pixel, and the algorithm assigns the majority class of those 

neighbours to that pixel. One of the main advantages of the k-NN classifier is its simplicity 

and ease of implementation. There are few parameters to tune, and the algorithm can be 

applied to a wide range of image classification tasks. Additionally, k-NN is a robust 

algorithm that can handle noisy and missing data. However, k-NN also has some 

limitations. One discernible obstacle is the computational expense associated with the 

algorithm, particularly when dealing with sizable datasets or feature spaces with high 

dimensions. Additionally, the choice of k-value can have a significant impact on the 

performance of the algorithm and finding the optimal k-value can be challenging. Within 

the realm of SAR image classification, a prevalent approach towards feature extraction 

involves the utilization of texture features including but not limited to the grey-level co-

occurrence matrix (GLCM), grey-level run-length matrix (GLRLM), grey-level size zone 

matrix (GLSZM), and grey-level difference matrix (GLDM). These texture features serve 

as viable candidate inputs for algorithms such as the k-NN. It is a type of lazy learning 

algorithm that classifies new data points based on the majority class of its closest "k" 

training examples. The distance between the new data point and the training examples is 

typically measured using the Euclidean distance formula: 

                                                        𝑑𝑥𝑦 = √∑(𝑥𝑖 + 𝑦𝑖)
2

𝑛

𝑖=1

                                                    (3.1) 

Nonetheless, the primary limitation of the k-NN decision rule is its substantial 

computational complexity stemming from the extensive number of distance computations 

required. In pattern spaces characterized by realistic dimensions, identifying a variant of 
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the rule that significantly reduces computational intensity compared to the brute force 

method becomes a challenging task. The brute force method involves calculating distances 

between the unknown pattern vector and the prototype vectors, requiring computations 

for all possible combinations. To address this limitation, alternative adaptations of the 

nearest neighbour classifiers have been proposed, frequently incorporating editing, or 

pruning techniques. These modifications aim to reduce the number of prototypes while 

maintaining classification accuracy, offering potential solutions to mitigate computational 

demands. The algorithm for classification works by identifying the nearest patterns in data 

space to a target pattern 𝑥, which is the pattern for which we want to predict the label. The 

class label assigned to the target pattern is based on the majority class label among its K-

nearest neighbours. To use k-NN, a similarity measure must be defined in data space. The 

Minkowski metric (p-norm) is a commonly used similarity measure in ℝ𝑞. 

                                           ‖𝑥′ − 𝑥𝑗‖
𝑝
= (∑|(𝑥)′ − (𝑥𝑖)𝑗|

𝑝

𝑞

𝑖=1

)

1
𝑝

                                         (3.2) 

where the Euclidean distance corresponds to 𝑝 =  2. However, for other data spaces, 

appropriate distance functions must be selected. For instance, the Hamming distance can 

be used in 𝔹𝑞. In binary classification problems, where the label set is 𝒴 =  {1, −1}, k-

NN is defined as follows: 

                                        𝑓𝐾𝑁𝑁(𝑥′) =

{
 

 1     𝑖𝑓  ∑ 𝑦𝑖 ≥ 0
𝑖⊂𝒩𝐾(𝑥′)

 

−1 𝑖𝑓  ∑ 𝑦𝑖˂0
𝑖⊂𝒩𝐾(𝑥′)

                                     (3.3) 

Given a specific neighbourhood size, denoted as K, and a set of indices 𝒩𝐾(𝑥′) that 

represents the K-nearest patterns to a target pattern. 

The selection of K determines how localized KNN will be. When K = 1, it tends to form 

small neighbourhoods in regions where patterns from various classes are dispersed. 

However, larger neighbourhood sizes, such as K = 20, disregard patterns with labels in 

the minority. To illustrate the classification difference between KNN with K = 1 and 
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K=20, consider a simple two-dimensional dataset with two overlapping data clouds, each 

containing 50 Gaussian-sampled red and blue points.  

When the neighbourhood size is small, KNN tends to overfit and become local. On the 

other hand, for larger neighbourhood sizes, KNN generalizes and ignores small clusters 

of patterns. Bright blue areas represent data space locations classified as blue, while white 

areas represent those classified as red. KNN with K = 1 results in a local prediction, 

meaning an outlier blue point located at the center of the red cloud is identified as blue. 

Meanwhile, the classifier generalizes for larger K values, disregarding small clusters of 

patterns. KNN establishes a Voronoi tessellation in data space. When applied to vast 

datasets, KNN must scan a subset of patterns to identify the K-nearest neighbours, but it 

can still provide a good approximation. 

 

Figure 13: The comparison on two data clouds that are Gaussian-based is made for 

two different neighbourhood sizes, K = 1 and K = 20. 

C. Support Vector Machine 

The support vector machine (SVM) is a machine learning algorithm used for 

identifying subtle patterns in complex datasets (Vapnik, 1998). It is a supervised learning 

algorithm that learns from previous examples to predict the classification of new, unseen 
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data. Cristianini and Shawe-Taylor (2000) have demonstrated the broad application of the 

Support Vector Machine (SVM) algorithm across diverse domains, including text 

categorization, image recognition, and hand-written digit recognition. In recent years, 

SVMs have emerged as a powerful tool in various bioinformatics domains. Notably, they 

have been successfully employed in the identification of translation start sites (Zien et al., 

2000), detection of protein remote homology (Jaakkola et al., 1999; Liao and Noble, 2002; 

Leslie et al., 2003), recognition of protein folds (Ding and Dubchak, 2001), analysis of 

gene expression in microarray data (Brown et al., 2000; Guyon et al., 2001; Mukherjee et 

al., 1999; Furey et al., 2001; Vert and Kanehisa, 2003), functional classification of 

promoter regions (Pavlidis et al., 2001), prediction of protein-protein interactions (Bock 

and Gough, 2001), and identification of peptides from mass spectrometry data (Anderson 

et al., 2003). These applications highlight the versatility and effectiveness of SVMs in 

addressing various challenges in the field of bioinformatics.  

The SVM algorithm is popular due to four main reasons. The proposed algorithm is 

underpinned by a robust theoretical framework rooted in VC dimension and the principle 

of structural risk minimization. Secondly, it can handle large datasets. Thirdly, it's flexible 

and has been applied to various domains, thanks to the robustness of the algorithm and 

the use of kernel functions for parameterization. The kernel function can be adjusted to 

include prior knowledge of a classification task. Finally, the SVM algorithm is highly 

accurate, which has contributed to its widespread application, despite the underlying 

theory not fully explaining its success. 

1. Linear support vector machine 

Linear SVM, a commonly employed machine learning algorithm, is highly effective 

for tackling classification problems. Specifically designed for linear classification 

scenarios, where data can be segregated by a single straight line or hyperplane, this variant 

of SVM excels. By aiming to locate the optimal hyperplane that distinctly separates the 

data into respective classes, the algorithm maximizes the margin between these classes. 

The margin, quantified as the distance between the hyperplane and the nearest data points 

(known as support vectors) from each class, plays a critical role in achieving optimal 

classification performance. The objective of the linear SVM is to maximize the margin 
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and choose the hyperplane that has the largest distance from the closest data points of each 

class. The decision boundary of a linear SVM is a hyperplane in the feature space that 

separates the data into different classes. 

Let’s assume that 𝑥 ⊂ ℝ𝑞, the linear discriminant function is a mathematical expression 

used for classification tasks. It takes a pattern 𝑥 as input and produces an output based on 

a linear combination of the components of 𝑥. The coefficients of this linear combination, 

called weights or parameters, are learned from a training dataset. The goal is to find the 

optimal values of the weights that maximize the separation between patterns from 

different classes. Once the weights are learned, the discriminant function can be used to 

predict the class of new patterns. 

                                                               𝑓(𝑥) = 〈𝑤, 𝑥〉 + 𝑏,                                                      (3.4) 

A decision hyperplane is determined by a scalar product, weight 𝑤 ∈  ℝ𝑞, bias 𝑏 ∈  ℝ, 

and is also referred to as an inner product. 

                                                                〈𝑤, 𝑥〉 =∑𝑤𝑗𝑥𝑗

𝑞

𝑗=1

                                                       (3.4) 

The function 𝑓(𝑥) partitions the data space into two halves based on its sign. The SVM's 

learning objective is to determine the most suitable values for 𝑤 and 𝑏 parameters, which 

can effectively separate the two classes and ensure the accurate classification of pattern 

𝑥′. 

                                                𝑓𝐿𝐼𝑁(𝑥′) = {
+1   𝑖𝑓 𝑓(𝑥′) ≥ 0
−1   𝑖𝑓 𝑓(𝑥′) ˂ 0

                                                (3.5) 

The linear classifier is also referred to as a linear decision hyperplane and is optimized to 

correctly classify patterns. The optimal decision hyperplane should have a large distance 

to its closest patterns, known as the margin, and can be represented as 1/w2. In the hard 

margin SVM, a linear decision hyperplane is defined to correctly classify all patterns. The 

optimization problem can be formulated as: 
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𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑤,𝑏
1

2
‖𝑤‖2 

                                                             𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑡𝑜: 𝑦𝑖(〈𝑤, 𝑥𝑖〉 + 𝑏) ≥ 0                                 (3.6) 

𝑓𝑜𝑟 𝑖 = 1, . . . , 𝑁           

From a geometrical standpoint, the objective is to identify the hyperplane that maximizes 

the total distance to the nearest positive and negative instances used in training. This 

distance is commonly referred to as the margin (as shown in Figure 12), and the optimal 

hyperplane is derived by maximizing the expression 
2

‖𝑤‖
 or, alternatively, minimizing ‖𝑤‖ 

while subject to the constraint 𝑦𝑖(〈𝑤, 𝑥𝑖〉 + 𝑏) ≥ 0. 

 

Figure 14: The potential solutions for the problem of finding a separating plane. 

The second solution is anticipated to result in better generalization compared to the first. 

To enhance generalization capability, the distance between the separating hyperplane 

𝑓(𝑥) and patterns should be maximized, provided that all training patterns are correctly 

classified. Since patterns are frequently not separated linearly, the separability constraint 

is loosened by introducing slack variables ξ, which quantify the deviation of patterns from 

the associated hyperplane. 

2. Radial Basis Function (RBF) kernel  

The kernel function is a mathematical function that can convert input data from a 

lower dimension to a higher one, by mapping it into a new feature space. This new feature 
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space will make the data linearly separable, allowing for the use of a support vector 

machine to find a hyperplane that separates the data. For example, if the input data is two-

dimensional, the kernel function can map it into a three-dimensional space where it will 

be linearly separable.  

The fundamental concept behind kernel methods is to transform an input pattern 𝑥 into a 

feature space represented by ɸ(𝑥). For instance, a polynomial feature space can be used 

to represent a two-dimensional input pattern 𝑥 = (𝑥1, 𝑥2)
𝑇 under a quadratic polynomial 

transformation as ɸ(𝑥) = (𝑥1
2, 𝑥2

2, √2𝑥1𝑥2)
𝑇 . The kernel trick is an essential part of 

most kernel algorithms, where the dot product of two input patterns 𝑥 and 𝑥’ in feature 

space ɸ(𝑥). ɸ(𝑥′) is needed to be computed by a kernel function 𝑘(𝑥, 𝑥′). This eliminates 

the need to work explicitly in the feature space. In the case of the quadratic example, the 

corresponding kernel is (𝑥. 𝑥′)2. Other algorithms, such as neural networks or tree 

ensembles, extract intrinsic properties of data points through a kernel function, which can 

result in more features than kernel algorithms. This is particularly useful for problems 

involving handwritten recognition, face detection, and other tasks. 

The development of kernel machines was initially intended to address supervised learning 

tasks, such as classification and regression. The predictor at a given test point 𝑥 can be 

represented as ℎ(𝑓(𝑥)) , where 𝑓(𝑥) = ∑ 𝛼𝑖𝑘(𝑥, 𝑥𝑖)
𝑛
𝑖=1 . The function ℎ is given and may 

be the sign function for a two-class classification problem or the identity function for a 

regression problem, The {𝑥𝑖}
𝑛
𝑖=1

 set comprises the patterns used for training, and the 𝛼𝑖 

coefficients are real numbers. Such prediction methods are not uncommon in statistics. 

Kernel machines encompass various techniques, such as spline methods (e.g., Wahba 

1990; Green and Silverman 1994) and Gaussian process models, which operate in the 

realm of function space regularization and reproducing kernel Hilbert spaces. Gaussian 

process models have gained substantial prominence and have found extensive applications 

in geo-statistics and machine learning (e.g., Williams and Rasmussen 1996). These 

models leverage the concept of Gaussian processes to effectively model and analyze 

complex data patterns, making them valuable tools in diverse domains. 

The support vector machine differs from other methods in the expansion 𝑓(𝑥) =

∑ 𝛼𝑖𝑘(𝑥, 𝑥𝑖)
𝑛
𝑖=1  which is usually sparse. The support patterns are those training patterns 
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with non-zero α’s. The reason for this sparsity can be explained by considering a 

classification problem. When considering spline prediction techniques, it is customary to 

utilize the function 𝑓(𝑥) to effectively represent the logarithmic odds ratio 

𝑙𝑜𝑔 𝑝(𝑦 = +1|𝑥) = 𝑝(𝑦 = −1|𝑥). This is equivalent to a term for the negative logarithm 

of the likelihood, which is 𝑙𝑜𝑔(1 + 𝑒−𝑦𝑖𝑓𝑖) with  𝑓𝑖 = 𝑓(𝑥𝑖). Nevertheless, the SVM 

utilizes a different "data-fit" expression [1 − 𝑦𝑖𝑓𝑖]+, which is similar but has a key 

difference that it is exactly 0 for 𝑦𝑖𝑓𝑖 ≥ 0 ¸ 1. This term  [1 − 𝑦𝑖𝑓𝑖]+ is considered a soft 

constraint. If 𝑦𝑖𝑓𝑖 ≥ 1, the constraint is satisfied; Otherwise, a penalty is incurred for its 

violation. The characteristic of Support Vector Machines (SVM) induces sparsity, 

whereby a training instance is deemed safely classified. (When 𝑦𝑖𝑓𝑖 ≥ 1), If a training 

point is not required to satisfy the constraint (i.e., the constraint is not active), then this 

point will not be included in the expansion. 

The RBF kernel then uses the basic idea of Linear SVM to perform classification. To 

enhance the dimensional space, projecting the data into a higher level is a requisite, the 

RBF kernel employs the radial basis function, which can be expressed as: 

                                                     𝑘(𝑥, 𝑥′) = 𝑒𝑥𝑝(−
‖𝑥 − 𝑥′‖2

2𝜎2
)                                             (3.7) 

The term  ‖𝑥 − 𝑥′‖2 represents the Squared Euclidean Distance between two data points 

𝑥 and 𝑥’. By tuning the σ parameter, The Radial Basis Function (RBF) kernel possesses 

the capability to transform efficiently and effectively non-linearly separable data points 

into a higher-dimensional space, thereby facilitating separation by means of a hyperplane.  

By incorporating a new parameter 𝛾 =
1

2𝜎2
 , the equation can be expressed as: 

                                                   𝑘(𝑥, 𝑥′) = 𝑒𝑥𝑝(−𝛾‖𝑥 − 𝑥′‖2)                                             (3.8) 

The RBF kernel function is characterized by a simple equation, wherein the Squared 

Euclidean Distance is multiplied by the gamma parameter, followed by taking the 

exponent of the entire product. By implementing this equation, the transformed inner 

products for mapping the data into higher dimensions can be computed directly, without 

transforming the entire dataset, thus avoiding any inefficiencies. This is precisely why the 

function is referred to as the RBF kernel function. 
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Figure 15: The graphical representation of the distribution of the RBF kernel. 

The distribution plot of the RBF kernel resembles the Gaussian distribution curve, also 

called a bell-shaped curve. This is why the RBF kernel is often referred to as the Gaussian 

Radial Basis Kernel. 

D. Random Forest 

The Random Forest (RF) algorithm is a type of supervised machine learning 

technique commonly utilized for both classification and regression analysis. This 

approach constitutes an ensemble methodology whereby numerous decision trees' 

outcomes are integrated to foster a more precise and robust prediction. This method can 

be used to classify different objects or land covers in the image. The algorithm works by 

training multiple decision trees on different subsets of the SAR image data and features, 

and then averaging their predictions to classify each pixel in the image. The described 

algorithm demonstrates its versatility by being applicable to both Classification and 

Regression problems within the domain of machine learning. It operates on the principle 

of ensemble learning; wherein multiple classifiers are utilized to address intricate 

problems and enhance the overall performance of the model. By combining the insights 

and predictions from multiple classifiers, the algorithm harnesses the collective 

intelligence to achieve more accurate and robust results. This approach proves particularly 
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effective in tackling complex problems where a single classifier may struggle to provide 

satisfactory outcomes. The Random Forest algorithm is a classification method that 

involves multiple decision trees, each of which are trained on diverse sub-samples of the 

input data. By computing the average of the predictions produced by the individual 

decision trees, the accuracy of the dataset is greatly enhanced. The Random Forest 

approach does not depend solely on a solitary decision tree, but instead determines the 

output by aggregating the majority votes derived from the predictive models generated by 

multiple trees. For the purpose of improving precision and minimizing overfitting, it is 

recommended to augment the quantity of trees within the forest. 

 

 

Figure 16: The random forest classifier processing diagram. 

In recent years, there has been an increasing interest in the use of the random forest (RF) 

classifier (Breiman, 2001) due to its superior classification performance and fast 

processing speed, as demonstrated in various studies (Du et al., 2015, Pal, 2005, 

Rodriguez-Galiano et al., 2012). The RF classifier achieves accurate classification results 

by using predictions from a group of decision trees (Breiman, 2001). Moreover, this 

classifier can effectively identify and rank variables that have the highest discriminatory 

power between target classes. This feature is particularly valuable since selecting the most 

relevant variables from high-dimensional remotely sensed data is time-consuming 
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(Körting et al., 2013), error-prone, and subjective process (Belgiu et al., 2014a). Several 

studies have extensively examined the application of the RF classifier for categorizing 

hyperspectral data (Ham et al., 2005) and distinguishing land cover types like ETM+ (Pal, 

2005) or MSS and DEM data (Gislason et al., 2006). 

Random forest is a useful machine learning algorithm for handling large datasets with 

numerous predictor variables. However, in some cases, it may be necessary to minimize 

the number of predictors to improve efficiency. For instance, when creating a medical 

prediction model, it might be preferable to use only the most critical variables instead of 

all variables present in the electronic medical record. Variable selection is a technique that 

identifies the most critical predictors for developing a parsimonious model with optimal 

predictors. By selecting the optimal predictors based on statistical characteristics like 

accuracy or importance, variable selection can reduce the data collection burden and 

enhance prediction model efficiency. Considering the prevalent high-dimensional nature 

of contemporary datasets, the process of selecting variables has emerged as an 

indispensable element in the development of accurate prediction models. 

In this context, we shall limit our attention to the binary classification scenario and 

disregard the consideration of multi-class complications, even though random forests have 

been demonstrated to be competent in addressing such complexities in Díaz-Uriarte and 

de Andrés (2006). In this problem (outlined in Devroye et al. 1996), the binary response 

𝑌 has two possible outcomes {0, 1} . Given 𝑋, the value of 𝑌 must be predicted. A 

classifier or classification rule, 𝑚𝑛, is a Borel measurable function of 𝑋 and 𝐷𝑛 which 

aims to estimate the label 𝑌 from 𝑋 and 𝐷𝑛. In this context, a classifier 𝑚𝑛 is considered 

consistent if the probability of error is minimized. 

                                                      𝐿(𝑚𝑛) = ℙ[𝑚𝑛(𝑋) ≠ 𝑌]
𝑛→∞
→   𝐿∗                                      (3.9) 

The variable 𝐿∗ refers to the error made by the Bayes classifier that is ideal but not known. 

                         𝑚 ∗ (𝑥) = {
1   𝑖𝑓 ℙ[𝑦 = 1|𝑋 = 𝑥] > ℙ[𝑦 = 0|𝑋 = 𝑥] 
0                                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

                      (3.10) 

For classification, the random forest classifier is created by taking the majority vote of the 

classification trees. 
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                𝑚𝑀,𝑛(𝑥; 𝛩1, . . . , 𝛩𝑀, 𝐷𝑛) = {
1 𝑖𝑓 

1

𝑀
∑ 𝑚𝑛(𝑥; 𝛩𝑗 , 𝐷𝑛) > 1/2

𝑀

𝑗=1

0                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

              (3.11) 

If a section of a tree represents an area labeled as A, then a classifier using randomized 

trees can take a straightforward shape: 

               𝑚𝑀,𝑛(𝑥; 𝛩𝑗 , 𝐷𝑛) = {
1 𝑖𝑓 ∑ 1𝑋𝑖 ⊂ 𝐴,𝑌𝑖=1 > 

𝑖⊂𝐷∗𝑛(𝛩𝑗)

1𝑋𝑖 ⊂ 𝐴,𝑌𝑖=0, 𝑥 ∈ 𝐴

0                                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

           (3.12) 

If the leaf corresponds to region 𝐴, then a randomized tree classifier adopts a simple 

approach where a majority vote is taken over all data points (𝑋𝑖, 𝑌𝑖) in the same region 

selected during the resampling step. The set 𝐷∗𝑛(𝛩𝑗) contains the selected data points. In 

the event of a tie, class 0 is favored by convention. Algorithm 1 can be easily modified to 

perform two-class classification without changing the CART-split criterion. Consider a 

single tree with no subsampling step, where 𝑌 ∈ {0,1}. For any generic cell 𝐴, let 𝑝0,𝑛(𝐴) 

(𝑟𝑒𝑠𝑝. , 𝑝1,𝑛(𝐴)) denote the empirical probability that a data point in cell 𝐴 has label 0 

(resp., label 1). By noticing that 𝑌̅𝐴 =  𝑝1,𝑛(𝐴) = 1 − 𝑝0,𝑛(𝐴), the classification CART-

split criterion reads, for any (𝑗, 𝑧) ∈ 𝐶𝐴. 

    𝐿𝑐𝑙𝑎𝑠𝑠,𝑛(𝑗, 𝑧) = 𝑝0,𝑛(𝐴)𝑝1,𝑛(𝐴) −
𝑁𝑛(𝐴𝐿)

𝑁𝑛(𝐴)
× 𝑝0,𝑛(𝐴𝐿)𝑝0,𝑛(𝐴𝐿)

−
𝑁𝑛(𝐴𝑅)

𝑁𝑛(𝐴)
× 𝑝0,𝑛(𝐴𝑅)𝑝0,𝑛(𝐴𝑅)                                                                 (3.13) 

This measure is known as the Gini impurity measure (Breiman et al. 1984) and forms the 

basis of the criterion. Its interpretation is straightforward: given a data point that falls 

within a particular cell 𝐴, the probability of labeling it as ℓ is 𝑝ℓ ,𝑛(𝐴), with ℓ taking values 

in {0,1}. To estimate the probability that the item actually belongs to class ℓ, one can use 

𝑝ℓ ,𝑛(𝐴), which is the empirical probability. The estimated error using this approach is the 

Gini index, which is equal to 2𝑝0,𝑛(𝐴)𝑝1,𝑛(𝐴). However, it is important to note that the 

prediction strategies differ in regression and classification. In the classification case, a 

local majority vote is used by each tree, while in regression, local averaging is used to 

make predictions. 
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IV. DESIGNED EXPERIMENTS AND RESULTS 

A. Data Base Used 

The validation of the proposed classifiers was done using a database of Synthetic 

Aperture Radar (SAR) images of ten military ground targets. These images were obtained 

as part of the Moving and Stationary Target Acquisition and Recognition (MSTAR) 

program, which is a project backed by the Defense Advanced Research Projects Agency 

(DARPA). The images were collected using a Twin Otter SAR sensor payload from 

Sandia National Laboratories and operated at X-band frequency. 

Table 1: Details of the targets from MSTAR dataset used for the experiments. 

 

The selected targets for the actual experiments are the 2S1 rocket launcher, and 

four armored personnel carrier BMP2, BRDM-2, BTR-60 and BTR-70, D-b Bulldozer, 

T62 tank, T72 tank, ZIL131 truck, and the ZSU-23-4 air defense unit. 
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The classifiers were trained using image clips gathered at an altitude of 17 degrees and 

the clips obtained at an altitude of 15 degrees were used as testing images. The resolution 

of the clips was adjusted to 96x96 pixels. 

B. Experiment Preprocessing Description 

1. Reshaping Data 

Using Python 3.9, we reshape the training and testing data matrices by flattening 

them into a single vector by using the ‘numpy’ function ‘np.reshape()’. The new shape is 

determined by multiplying the second and third dimensions of the original shape. The first 

dimension of the new shape is the number of samples, which is the same as the first 

dimension of the original shape. 

By reshaping the data into a single vector, the algorithm can treat each pixel in the 

image as a separate feature, which allows it to learn patterns in the image data. It is a very 

important preprocessing step for image data because it allows for more efficient 

computation during the training and testing of the model. Reshaping the data into a single 

vector makes it more easily comparable to other types of data, such as text, allowing for 

more flexibility in choosing machine learning models and techniques. 

2. Normalizing Data 

This step is being used to normalize the pixel values of the SAR images. Dividing 

each element of training and testing data by 255.0 will scale all pixel values to the range 

of 0 to 1. This is useful for machine learning algorithms as it can help to improve the 

stability of the training process and make the model more robust. 

3. Mean-Centering Data 

This is done by subtracting the mean value of each feature (i.e., each pixel value in 

the SAR image) across all samples from the feature values for each sample. This is 

important because it helps to standardize the data and remove any bias due to the mean of 

the data. Furthermore, it is an important step to adjust the overall brightness of the image 

to make it easier to analyze and it can help to reduce the impact of lighting conditions on 
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the data. It is also important to note that before the mean centering the data is normalized 

by dividing it with 255.0 to ensure that the feature values are in the range of [0, 1]. 

C. Classification of Reduced Number of Samples 

1. Classification of Original data 

When we use a classifier on data that has been reshaped to a single vector and 

normalized, the classifier will treat each pixel value as a separate feature. The classifier 

will then use these features to determine the class label of the image. 

In the context of linear classification, a hyperplane is typically sought to effectively 

and accurately segregate distinct categories within the given feature space. The placement 

and alignment of the hyperplane shall be ascertained by the coefficients of the model that 

are acquired through the process of training data. Once the hyperplane is found, the 

classifier will use it to make predictions on new images by computing the dot product of 

the image's feature vector with the coefficients of the model. If the result is positive, the 

image is classified as one class, and if it is negative, it is classified as the other class. 

In the case of a non-linear classifier, it will learn a more complex decision boundary that 

separates the different classes in the feature space, this can be done by kernel trick or other 

methods. The classifier will then use this decision boundary to make predictions on new 

images.  

2. Reduced Number of Data 

To evaluate the importance of different rotation angles of the targets for the 

classification program and how it affects its accuracy, we selected and down sampled the 

training data for each of the 10 classes in the dataset. For this reason, a ‘for’ loop was used 

to iterate over each class. 

For each class, the code selects only every 3rd example from the input arrays of the original 

data. The resulting arrays are then appended to a new variables which are used to store the 

selected samples, and the ‘np.concatenate()’ function is used to concatenate these lists to 
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form a single training set. The new number of training samples and the difference angle 

between two successive samples are listed in Table 2. 

Table 2: 1/3 Reduced number of samples of MSTAR ten target classes. 

Target Class 

Number of 

Training 

Samples 

Angle 

between 

Samples (°) 

Reduced 

Number of 

Training 

Samples 

New Angle 

between 

Samples (°) 

2S1 299 1.2 150 2.4 

BMP2 233 1.54 117 3.08 

BRDM2 298 1.2 149 2.4 

BTR60 256 1.4 128 2.8 

BTR70 233 1.54 117 3.08 

D7 299 1.2 150 2.4 

T62 298 1.2 149 2.4 

T72 232 1.55 116 3.1 

ZIL131 299 1.2 150 2.4 

SZU234 299 1.2 150 2.4 

 

After that, we reduced more features by selecting only every 5th example from the input 

arrays of the original data.  The new number of training samples and the difference angle 

between two successive samples for each case, are listed in Table 3. 

Reducing the amount of data in a dataset have advantages, such as reducing the 

computational time required to train the model, as it needs to process fewer examples, also 
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avoiding overfitting, especially when the original dataset is large, and the model is 

complex. Overfitting is a phenomenon that arises when a model exhibits a close fit to the 

characteristics of training data but fails to extend that performance to novel, unseen data. 

Table 3: 1/5 Reduced number of samples of MSTAR target classes. 

Target Class 

Number of 

Training 

Samples 

Angle 

between 

Samples (°) 

Reduced 

Number of 

Training 

Samples 

New Angle 

between 

Samples (°) 

2S1 299 1.2 60 6 

BMP2 233 1.54 47 7.7 

BRDM2 298 1.2 60 6 

BTR60 256 1.4 52 7 

BTR70 233 1.54 47 7.7 

D7 299 1.2 60 6 

T62 298 1.2 60 6 

T72 232 1.55 47 7.75 

ZIL131 299 1.2 60 6 

SZU234 299 1.2 60 6 

 

However, reducing the amount of data can also lead to a loss of information and lower the 

testing accuracy, as we can see in the accuracy results listed in Table 4. 
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Table 4: Training and testing accuracy for original and reduced features. 

Target Training Accuracy Testing Accuracy 

Original Features 0.999 0.969 

1/3 Reduced Features 0.998 0.921 

1/5 Reduced Features 1.0 0.853 

 

D. Classification after Features Extraction 

To improve the classification accuracy, we implemented different features 

extraction methods that were explained in detail in the second section. First, we added a 

code for shuffling the training and testing datasets by concatenating the feature data (X) 

and the target data (y) into a single matrix, then using the ‘np.random.shuffle’ function to 

randomly shuffle the rows of the matrix. Finally, returns the shuffled feature and target 

data as separate arrays.  

This shuffling is important for training machine learning models because it helps 

ensure that the model is not overfitting to the specific order of the data, and that it has 

been observed that the model exhibits enhanced capability to extend its learning to novel, 

unencountered datasets, thereby demonstrating superior generalization abilities. 

The Data have been classified after extracting the most significant features using Principal 

Component Analysis (PCA), then using Kernel Principal Component Analysis (KPCA), 

later using the independent Component Analysis (ICA). 

We used three different classifiers with each feature extraction method, K- Nearest 

Neighborhood (K-NN), Random Forest (RF), Radial Basis Function kernel with Support 

Vector Machine (RBF-SVM) and Linear Support Vector Machine (SVM). 

The accuracy of classifications has been calculated for each one of the mentioned 

methods. The results are listed in Table 5. 



 

50 

 

Table 5: Accuracy results for SAR data without noise reduction 

Without Noise Reduction 

Features 

Classification Accuracy 

K-NN (k=10) 
Random 

Forest 
RBF-SVM 

Linear SVM 

(C=1) 

Original 82.72% 78.22% 96.97% 95.83% 

ICA (80) 93.04% 90.76% 96.85% 55.05% 

PCA (80) 95.79% 96.05% 97.73% 92.16% 

KPCA (80) 95.77% 96.39% 97.63% 92.28% 

E. Effect of Speckle Noise Reduction on Classification 

1. Classification Accuracy after Applying Mean Filter 

To mitigate the deleterious effects of stochastic noise within the data set under 

examination, a mean filter was employed prior to engaging in the process of classification.  

This procedure contributes to enhancing the efficacy of the classifier by rendering the 

features depicted in the image distinguishable and amenable to classification. For this 

reason, we implement a code with a mean filter before reshaping the data. We define the 

"kernel" variable as a 2-dimensional array with shape (3, 3), which represents the filter 

that will be used for convolution. The values in the array are set to 1/9, so the average of 

the neighboring pixels will be computed as the sum of their values divided by 9. The code 

applies the mean filter to each image in the arrays of training and testing data by using the 

"convolve" function from a library such as ‘SciPy’ or ‘NumPy’. The convolve function 

performs a convolution operation between the image and the filter kernel, successfully 

supplanting each pixel esteem with the normal of its neighboring pixel values. We tested 
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all the previously mentioned classification methods after implementing noise reduction 

and list the results in Table 6. 

Table 6: Accuracy results after reducing noise with Mean filter. 

After Mean Filter Noise Reduction 

Features 

Classification Accuracy 

K-NN (k=10) 
Random 

Forest  
RBF-SVM 

Linear SVM 

(C=1) 

Original 96.08% 86.14 % 98.10% 97.23% 

ICA (80) 96.10% 91.91% 98.68% 63.71 % 

PCA (80) 96.94 % 97.81% 98.43 % 94.96 % 

KPCA (80) 96.86 % 97.89% 98.47 % 95.17 % 

2. Classification after Applying Median Filter 

Median filter was implemented to evaluate the difference in the accuracy results and 

see which filter gives the best outcome to improve the accuracy. The median filter replaces 

each pixel in the SAR image with the median of its neighboring pixels. The median is the 

middle value of the set of values, and is a more robust statistic than the mean, as it is less 

affected by extreme values and does not introduce blurring and preserve the resolution of 

the image.  

For this reason, we used a code with two "for" loops to iterate through each image in the 

input arrays. In each loop, the current image is stored in a variable. The 

"ndimage.median_filter" function is then used to apply the median filter to the image, 

using a kernel size of (3,3). The filtered image is stored in a different variable, and then 

the original image is replaced with the filtered image. The accuracy results for the different 

classification methods that we trained are listed in Table7. 
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Table 7: Accuracy results after reducing noise with Median filter. 

After Median Filter Noise Reduction 

Features 

Classification Accuracy 

K-NN (k=10) 
Random 

Forest  
RBF-SVM 

Linear SVM 

(C=1) 

Original 93.27% 85.27% 97.77% 96.57% 

ICA (80) 93.03% 90.63% 97.81% 57.23% 

PCA (80) 95.67% 97.07% 98.14% 96.57% 

KPCA (80) 95.58% 97.07% 98.10% 93.97% 

 

3. Training and Testing Confusion matrix 

To evaluate the performance of our classification model, we trained a confusion 

matrix as it provides a comprehensive summary of the model's predictions, we chose the 

SVM-RBF model since it gives the best results. The framework shows the number of 

rectify and erroneous expectations made by the model and helps to identify patterns of 

misclassification and bias in the model's performance. 

By visualizing the confusion matrix, it is possible to assess the accuracy, precision, recall 

and F1 score of the model, and compare its performance with other models. 
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Table 8: Confusion table of true and predicted training classes of SVM-RBF 

classifier with PCA feature extraction and without speckle filtering. 

 

To build the Confusion Matrix, it is crucial to combine both the actual class labels and the 

classifier's predictions into one table (Table 8). The actual class labels are placed in the 

columns while the classifier predictions occupy the rows. This creates a square matrix 

with perfect classifications appearing along the main diagonal. A total of 2746 values were 

utilized for the training process, with the correct classifications being placed along the 

main diagonal of the Confusion Matrix. The Kappa coefficient measures the level of 

agreement between the classifications and the actual class labels. The results indicate that 

the Kappa value obtained from the training data is approximately 0.99, where a value of 

1 represents perfect agreement and a value of 0 signifies no agreement. 
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Table 9: Confusion table of true and predicted training classes of SVM-RBF 

classifier with PCA feature extraction and without speckle filtering. 

 

A testing matrix, like the Confusion matrix used for training, is employed to determine 

the precision of the code that has been written (as shown in Table 9). Similar to the training 

matrix, the true classifications and the classifier's predictions are organized in a column-

wise manner. In the training process, a total of 2425 values were utilized. Evaluating the 

trained data against the true classifications reveals an impressive overall accuracy of 

97.73%. Additionally, the Kappa value calculated from the training data measures an 

impressive agreement of 0.97, indicating a high level of concordance between the 

predicted and true classifications. These results underscore the effectiveness and 

reliability of the trained model in accurately classifying the data. 

To have a clear vision about the effect of speckle noise filtering we generated training and 

testing confusion matrices for the same classifier which is SVM-RBF, always extracting 

features with PCA. But this time after we implemented mean filtering on the data, to see 

how the process of speckle noise reduction moves forward the accuracy of the 

classification model. The results are shown in Tables 10 and 11. 
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Table 10: Confusion table of true and predicted training classes of SVM-RBF 

classifier with PCA feature extraction after speckle filtering. 

 

Table 11: Confusion table of true and predicted training classes of SVM-RBF 

classifier with PCA feature extraction after speckle filtering. 
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V. CONCLUSION AND FUTURE WORKS 

The valuable research conducted in Synthetic Aperture Radar (SAR) Automatic 

Target Recognition (ATR) technology was made possible by the public data released by 

DARPA/SNL and ARFL in the form of Moving and Stationary Target Acquisition and 

Recognition (MSTAR). This thesis presents a method to evaluate and rank the 

performance of ATR algorithms through the computation of their accuracies and 

respective confusion matrices and calculation of their Kappa statistics, which is typically 

a good indicator of a classification algorithm's reliability.  

The experiments were carried out on MSTAR data using Python programming 

codes with different classifiers such as KNN, Random Forest and SVM with its both 

technics, RBF SVM and Linear SVM. After applying multiple preprocessing methods and 

feature extraction as ICA, PCA and KPCA, we compared the effect of each of them on 

the classification accuracy, first without applying any speckle noise reduction filters and 

later after applying Mean and Median filters separately to evaluate their effect on the 

classification’s accuracy. We conclude that the noise reduction process has increased the 

accuracy of the classifiers. The best results we reached with our experiments were with 

RBF- SVM after applying PCA that gives us an accuracy of 97.72% that we were able to 

amplify with reducing the speckle noise on our data with Mean filter to reach 98.47%. 

To further advance the field, additional investigations can be undertaken to explore 

alternative methods for feature extraction, such as Non-Negative Matrix Factorization 

(NMF). This exploration would enable the analysis of various classification algorithms 

and their behavior. Moreover, the integration of deep learning techniques, including 

Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), holds 

promise for enhancing both the accuracy and robustness of automatic target recognition 

systems. Leveraging transfer learning, pre-trained deep learning models can be fine-tuned 

specifically for the target recognition task, minimizing the requirement for extensive 

labeled data. Furthermore, unsupervised learning techniques, such as clustering and 
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dimensionality reduction, provide opportunities for the automatic identification and 

categorization of diverse target types without relying on labeled data. These avenues of 

research offer promising avenues for advancing automatic target recognition 

methodologies. 
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