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POLARİMETRİK SAR VERİLERİNİN SINIFLANDIRILMASI 

İÇİN DERİN ÖĞRENMEYE DAYALI BİR YÖNTEM 

ÖZET 

 

Polarimetrik yapay açıklıklı radar (PolSAR) görüntülerinin sınıflandırması 

önemli bir PolSAR veri uygulamasıdır. Son yıllarda derin öğrenmenin yaygınlaşması, 

PolSAR görüntü sınıflandırmasında da önemli iyileşmeler sağlamıştır. Bu tezde, 

polarimetrik yapay açıklıklı radar (SAR) görüntülerinin sınıflandırılması için, bir derin 

evrişimsel sinir ağını kullanılmaktadır. Karmaşık değerli evrişimsel sinir ağı (CV-

CNN), geleneksel evrişimsel sinir ağını (CNN) karmaşık değerli işlemeye yönelik 

genişletir ve SAR görüntülerinde bulunan genlik ve açı bilgilerini kullanır. 

 Bu tezde, CV-CNN' nin polarimetrik SAR görüntü sınıflandırma işleminin 

performans değerlendirilmesi, pikselleri belirli arazi türlerine kategorize etme 

başarımını içerir. CV-CNN sonuçları SVM gibi bir makine öğrenmesi teknik ve 

Mahalanobis uzaklığı gibi basit bir istatistiksel tekniği ile karşılaştırmalı olarak, test 

başarımı, karmaşıklık matrisi kullanılarak verilir. 

 

Anahtar Kelimeler- Makine Öğrenimi, Derin Öğrenme, PolSAR, CV-CN 
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A DEEP LEARNING BASED METHOD FOR CLASSIFICATION 

OF POLARIMETRIC SAR DATA 

ABSTRACT 

 

Polarimetric synthetic aperture radar (POLSAR) image classification is a 

crucial POLSAR data application. The widespread use of deep learning in recent years 

has led to significant improvements in POLSAR image classification.  In this thesis, a 

deep convolutional neural network is used for the classification of polarimetric 

synthetic aperture radar (SAR) image. The complex-valued convolutional neural 

network (CV-CNN) extends the traditional convolutional neural network (CNN) to 

handle complex data and uses the amplitude and angle information found in SAR 

images. 

In this thesis, the performance evaluation of the polarimetric SAR image 

classification process of CV-CNN includes its performance in categorizing pixels to 

specific terrain types. The test performance is given using overall accuracy and 

confusion matrix, comparing CV-CNN results with machine learning technique such 

as SVM and a simple statistical technique such as Mahalanobis distance. 

 

Keywords- PolSAR, Machine Learning, Deep Learning, CV-CNN. 
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I. INTRODUCTION 

A.  Introduction 

Synthetic aperture radar, or SAR, is a type of active microwave imaging system 

that can generate detailed images regardless of lighting or weather conditions. A more 

advanced version of SAR, known as polarimetric SAR or PolSAR, can work in 

different polarization modes, which allows it to analyze the scattering characteristics 

of various types of land cover. This makes PolSAR particularly useful for image 

classification, which has a range of applications across various fields. Synthetic 

Aperture Radar (SAR) was first developed in the 1950s as a means of creating long-

range maps from an aerial or satellite perspective. Since then, it has undergone 

numerous improvements, including the ability to gather multipolarization data, cover 

wide swaths of land, and produce multi-frequency radar images. One of the current 

areas of focus in the field of remote sensing is the use of polarimetry with SAR, which 

allows for the monitoring of Earth's surface by gathering information about its physical 

properties. This is achieved using PolSAR (Polarimetric SAR) systems, which are 

capable of transmitting and receiving electromagnetic waves in both vertical and 

horizontal polarizations, in contrast to traditional SAR systems that only operate in a 

single polarization mode. This allows PolSAR to infer the properties of the surface 

more accurately. 

In recent years, the use of fully polarimetric synthetic aperture radar (PolSAR) 

for microwave remote sensing has become increasingly important, and it has been 

applied successfully in a variety of contexts. PolSAR image classification, which can 

be used as a final product for end users or as a foundational step in supporting other 

applications, has received a great deal of research attention. Over the past three 

decades, a significant number of algorithms have been created specifically for the 

purpose of classifying images generated by the polarimetric SAR (PolSAR) 

technology. The field of polarimetry has a rich history, beginning in the 1700s. George 

C. Sinclair put forward the idea of using a singular matrix, specifically with regard to 
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radar cross-section measurements of coherent scattering, in the 1940s. In the 1950s, 

E.M. Kennaugh made significant contributions to the field. However, there was little 

advancement in polarimetry until the 1970s, when Huynen's doctoral thesis renewed 

interest in the field. Despite this renewed interest, the full potential of polarimetry was 

not realized until the 1980s, when technological advancements in radar devices made 

it possible to develop polarimetric sensors for both military and civilian applications. 

Initially, these sensors were primarily used in airborne systems. 

Imaging radar has been widely used as a useful tool for remote sensing of the 

Earth since the successful launch of the SEASAT satellite with a synthetic aperture 

radar (SAR) system in 1978. SAR is the only practical technique for achieving high 

spatial resolution with imaging radar and is particularly useful for imaging from space 

platforms. The method consists of creating a large opening by moving the radar 

system. Using the AIRSAR system, the National Aeronautics and Space 

Administration Jet Propulsion Laboratory (NASA-JPL) captured the first polarimetric 

image in 1985. SAR satellites have also been used to detect ocean phenomena such as 

currents, surface and internal waves, and sea ice. The ability of imaging SAR systems 

to operate continuously and collect data in all weather conditions makes them a 

valuable tool for global Earth monitoring. Image classification, which involves 

assigning pixels to specific terrain types, is one of the primary applications of PolSAR 

data. The classification map that results can be used for land cover mapping or as input 

for further processing. One of the primary benefits of using microwaves for imaging 

is that they can penetrate clouds, allowing radar to provide its own illumination. This 

means that SAR can image the Earth at any time of day or night and in most weather 

conditions. There are now numerous space-borne and airborne SAR (AIRSAR) 

systems available, which are frequently used as primary remote sensing instruments in 

conjunction with multispectral radiometers. (G.Mullissa, C. Persello, and V. 

Tolpekin,2018). The SEASAT satellite was a pioneer in utilizing synthetic aperture 

radar (SAR) technology for the purpose of observing large areas of oceans and sea ice. 

It was soon discovered that the technology also had many potential uses for 

discriminating between different types of terrain and identifying targets. 

SEASAT SAR was designed to operate in the L-band frequency range (with a 

wavelength of 23.5 cm), and it featured a single polarization channel, known as HH 

(Horizontal transmit and Horizontal receive). Despite the fact that the satellite only 
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functioned for a brief period of 105 days due to a significant technical malfunction, it 

effectively showcased the potential of imaging radar technology. This achievement 

ultimately led to the launch of numerous space-borne SAR systems in the following 

decades, such as NASA's SIR-A and SIR-B in the early 1980s, the European ERS-1 

and ERS-2 in the 1990s, the Japanese JERS-1 in 1992, and the Canadian RADARSAT-

1 in 1995. The success of SEASAT SAR also led to an increased focus on developing 

and researching multipolarization and fully polarimetric imaging radar, which are 

considered a natural progression from single-polarization SAR technology. In recent 

decades, various pixel-based classification techniques have been proposed that make 

use of one of three main types of coherent scattering matrix information: the inherent 

characteristics of polarimetric scattering mechanisms, statistical properties, or a 

combination of both polarimetric scattering characteristics and statistical properties. 

Speckle noise can negatively affect the accuracy of methods that use pixel-wise 

polarimetric target decomposition parameters. To improve performance, researchers 

have looked into incorporating semantic information like spatial relations, texture, and 

shape, resulting in the creation of various region-based methods. A popular method 

for overcoming the limitations of pixel-based classification is the use of Markov 

random fields or conditional random fields to account for spatial interactions and 

segment data into distinct objects. Another approach that some researchers have taken 

is to use neural network models in conjunction with superpixel segmentation to 

improve performance. Region-based approaches can enhance classification outcomes, 

but they have limitations in their capacity to extract basic, manually designed spatial 

features from the data, and their capability to represent and differentiate may be 

limited. This is particularly true for high-resolution PolSAR data, for which shallow 

methods are often ineffective. To effectively classify this type of data, it is necessary 

to have a deep understanding of the underlying physics and to use a deep learning 

model that can automatically discover high-level spatial representations from the data. 

There are several traditional methods proposed for PolSAR image 

classification, such as wishart classifiers, target decompositions (TDs), and random 

fields (RFs). These methods frequently rely on low-level or mid-level characteristics 

obtained through feature engineering. However, these features may not be sufficient 

for accurately classifying high-resolution PolSAR data, particularly when dealing with 

complex scenes or multiple scattering effects. As a result, there has been a recent 
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movement for the use of deep learning algorithms, which can learn high-level features 

from data and have demonstrated promising results in PolSAR image classification 

applications. Traditionally, features used for PolSAR image classification have 

included statistical features, backscattering elements, TD-based features, and features 

commonly used for other types of images. However, these features are often class-

specific and require manual engineering, and the process of selecting and extracting 

them can be time-consuming and involve a considerable amount of trial and error. 

Furthermore, some features, like TD-based characteristics, rely substantially on 

complicated PolSAR data analysis and might be computationally costly. (J. Geng, H. 

Wang, J. Fan and X. Ma,2018). 

Recently, deep learning has become increasingly popular in the field of remote 

sensing, especially for the classification of synthetic aperture radar (SAR) images. This 

is because deep learning techniques can automatically find useful features from data, 

which leads to better classification accuracy and less need for manual feature 

engineering. Unlike shallow models like support vector machines and random forests 

that depend on a lot of input features and may not be effective with nonlinear data, 

deep learning techniques, particularly deep convolutional neural networks, have the 

ability to learn hierarchical representations of the data, enabling them to better 

understand the intricate relationships and patterns within the data. This is why deep 

learning has shown promising results in SAR image classification. 

B.  Synthetic Aperture Radar (SAR): 

Synthetic Aperture Radar (SAR) is a radar system used to generate high-

resolution images of the Earth's surface. It works by transmitting a radar pulse and 

measuring the time delay between the emission and the reflection back from the 

surface to create a detailed image. SAR has several benefits compared to other imaging 

systems. It operates 24/7, unaffected by atmospheric conditions such as clouds, and 

generates images with remarkable resolution, making it ideal for purposes like 

mapping, disaster response, and analyzing land use. 

A SAR system is comprised of three key components: a pulsed microwave transmitter, 

an antenna for both transmitting and receiving signals, and a receiver unit. This system 

is mounted on a moving platform and operates in a sidelooking configuration, with the 

antenna aimed perpendicular to the direction of the platform's movement (azimuth) 
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and angled towards the ground. The area captured by the antenna's beam in the ground 

range (x) and azimuth (y) directions is known as the antenna footprint. As the platform 

moves, the antenna scans the area, creating an image swath, which is the total area 

covered by the antenna's beam. This allows the system to produce a complete scan of 

the desired area. 

 

Figure 1. SAR imaging geometry in strip-map mode. 

C. Polarimetric Synthetic Aperture Radar (POLSAR): 

POLSAR is a cutting-edge variation of Synthetic Aperture Radar (SAR) that 

offers enhanced capabilities. Unlike standard SAR systems that only operate in a single 

polarization mode, PolSAR is equipped to work in different polarization modes, 

providing a more comprehensive understanding of the scattering properties of various 

land cover types. This capability is made possible by the system's ability to transmit 

and receive electromagnetic waves in both horizontal and vertical polarizations. This 

advanced feature enhances the accuracy of surface property determination, making 

PolSAR particularly useful for tasks such as image classification. In addition to 

providing information about surface properties, PolSAR can also be utilized to monitor 

changes in land cover and assess the environmental impact of human activities. 

PolSAR is a unique type of radar system that has the ability to measure not only the 

backscattered energy of objects in a scene but also their polarization state. This makes 

it distinct from traditional radar systems, which operate using a single, fixed 

polarization antenna for both transmission and reception. The goal of using PolSAR is 

to gather information about the nature of land features by analyzing changes in the 

polarization state of electromagnetic waves reflected from the Earth's surface. There 

are several methods for interpreting PolSAR data, including scattering matrices, 

covariance matrices, decomposition techniques, and polarimetric signatures. (Haixia 
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Bi, Jian Sun , Zongben Xu 2019). These methods allow for the representation of 

backscatter responses for all possible combinations of transmit and receive 

polarizations, thereby giving a complete understanding of the polarimetric information 

obtained from the system. 

 

Figure 2. The illustration of polarimetric SAR scattering mechanism, consisting of three parts: (a) representation of 
backscattering mechanism, (b) depiction of classical polarimetric SAR scattering categories, and (c) visualization of H-alpha 

scattering mechanism recognition plane. 

 

D. Frequency Bands used for SAR/POLSAR Systems: 

Synthetic aperture radar (SAR) systems use radio waves in different frequency 

bands to create images of the Earth's surface. The frequency band that is used can 

affect the resolution and penetration ability of the radar. 

▪ L band (1-2 GHz): L band radar has a relatively long wavelength, which allows 

it to penetrate through vegetation and shallow water. It is often used for 

mapping and remote sensing applications. 

▪ C band (4-8 GHz): C band radar has a shorter wavelength than L band radar, 

which allows for higher resolution images. It is commonly used for mapping 

and monitoring applications, and it can also penetrate through clouds and 

smoke. 

▪ X band (8-12 GHz): X band radar has a shorter wavelength than C band radar, 

which allows for even higher resolution images. It is often used for high-

resolution imaging applications. 

▪ P band (140-190 MHz): P band radar has a very long wavelength, which allows 

it to penetrate through dense materials such as soil and rock. It is used for 
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specialized applications such as subsurface imaging and underground utility 

detection. 

▪ S band (2-4 GHz): S band radar is commonly used for radar altimeter systems, 

which measure the altitude of aircraft above the ground. It has a shorter 

wavelength than L band radar, which allows for higher resolution 

measurements. 

▪ Ku band (12-18 GHz): Ku band radar is often used for satellite communications 

and remote sensing applications. It has a shorter wavelength than C band radar, 

which allows for higher resolution images. 

▪ Ka band (30-50 GHz): Ka band radar has a very short wavelength, which 

allows for extremely high-resolution images. It is used for high-resolution 

imaging and radar altimeter systems. 

Table 1. Types of SAR bands used and their respective wavelength and frequencies. 

 

 

A radar system operates by sending out a radar pulse and then measuring the 

reflection that comes back from the surface. By examining the time between the pulse 

being emitted and the reflection being received, the system can create an image of the 

surface. The choice of frequency band can impact the radar's capacity for detail and its 

ability to penetrate. 

E. Deep Learning: 

Deep learning involves the use of artificial neural networks (ANNs) that have 

several layers of processing units. These units, referred to as "neurons," are organized 

in a sequence of interconnected layers. Each layer learns to identify increasingly 

complex and abstract features as data moves through the network. This hierarchical 

learning of features enables deep learning algorithms to attain high precision in diverse 
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tasks like image classification and object detection as they learn to spot patterns and 

features that might not be easily noticeable to humans. In the area of remote sensing, 

deep learning has been utilized for various purposes, such as object detection, land 

cover classification, and image analysis. Deep learning, particularly through the use of 

convolutional neural networks, has demonstrated strong capabilities in various fields, 

including natural language processing and image processing. It has the potential to be 

applied to other areas as well. Deep learning algorithms, such as CNNs, are able to 

learn more abstract feature representations compared to traditional hand-engineered 

filters, leading to improved generalization performance in image classification tasks. 

The successful application of deep learning techniques in image classification has been 

driven by the availability of big data, advanced algorithms, and improved computing 

power. These same factors are present in the field of PolSAR image classification, 

making it a promising area for the use of deep learning techniques to improve 

classification results. 

PolSAR is a type of radar system that is designed to measure the amount of 

energy that is reflected from objects in a scene, along with their polarization state. 

Unlike traditional radar systems, which use a single polarization antenna, PolSAR can 

operate in different polarization modes, allowing it to gather more comprehensive 

information about the features of a scene. It is widely used in remote sensing 

applications for tasks such as land cover classification, object detection, and image 

interpretation. PolSAR is a radar system used for remote sensing purposes that can 

measure the energy of objects in a scene that is reflected back to the radar as well as 

their polarization state. Unlike traditional radar systems that only use one fixed 

polarization, PolSAR systems can operate in different polarization modes. The 

different polarization states of electromagnetic waves can reveal information about the 

characteristics of the land features being imaged. To understand the data gathered by 

PolSAR, various techniques such as scattering matrices, covariance matrices, and 

polarimetric signatures are utilized. Recent advances in the field of PolSAR image 

classification have been made possible by the use of deep learning techniques, which 

have yielded promising results. 

Unsupervised methods, on the other hand, do not rely on labeled data and 

instead attempt to cluster similar data points together based on the features of the data. 

These techniques are useful in situations where labeled data is scarce or expensive to 
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obtain. Additionally, semi-supervised methods make use of a limited amount of 

labeled data and additional unlabeled data to learn the relationship between the input 

and output variables. With the development of deep learning techniques, a growing 

number of studies have applied these approaches to PolSAR image classification tasks, 

resulting in improved accuracy and more robust performance compared to traditional 

methods.  Unsupervised methods in PolSAR image classification attempt to categorize 

pixels based on polarimetric statistical principles without the use of any labeled 

information. These methods generally employ polarimetric target decomposition 

theories such as Cloude-Pottier decomposition, Freeman decomposition, and four-

component decomposition to produce an initial categorization. Further refinement of 

the results is then performed using iterative algorithms that are based on different 

polarimetric statistical laws like the complex Wishart distribution, K-distribution, and 

U-distribution. Although unsupervised methods are convenient and quick to execute, 

their accuracy is typically lower compared to supervised methods, making them more 

suitable for preliminary analysis than final categorization. 

 The objective is to estimate the mapping function in such a way that new input 

data can be utilized to predict the output variables. Labeling the data for a machine 

learning model to learn from can be a challenging and time-consuming process. In 

supervised learning, a dataset with previously known correct answers is used to train 

the algorithm to make predictions. The algorithm predicts the outcome and is corrected 

by the known answers, continuing this process until its accuracy reaches an acceptable 

level. This type of learning is called "supervised," as the training dataset serves as a 

guide for the learning process. Popular supervised methods for PolSAR image 

classification include Bayesian classification, neural networks, support vector 

machines (SVM), and k-nearest neighbor, due to their high classification accuracy 

(CA). 
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Figure 3. Supervised Learning 

F. Literature Reviews: 

Deep learning algorithms are a type of machine learning that is based on 

artificial neural networks. They have become increasingly popular in recent years due 

to their ability to process large amounts of data and extract meaningful features from 

it. This makes them particularly well-suited for classification tasks, such as identifying 

objects in images, recognizing speech, and analyzing text. Unlike traditional machine 

learning algorithms that rely on manual feature engineering, deep learning algorithms 

are capable of automatically learning hierarchical representations of data, which can 

often lead to better performance. There are several types of deep learning algorithms, 

including convolutional neural networks (CNNs), recurrent neural networks (RNNs), 

and long short-term memory (LSTM) networks. These algorithms can be trained end-

to-end, meaning they can learn directly from the raw data without the need for manual 

feature engineering. This makes the training process more efficient and effective. 

In terms of evaluating the performance of deep learning classification models, 

researchers often use a variety of metrics, including accuracy, precision, recall, and the 

F1 score. These metrics are used to assess the model's performance on a test dataset 

and can help researchers compare different models and identify areas for improvement. 

Overall, the field of deep learning classification is still evolving, and there is a wealth 

of opportunity for further research and innovation. The literature on the topic continues 

to grow rapidly, with many different approaches and methods being proposed.  

A new approach for PolSAR image classification was presented in a research 

study. The method employs an advanced deep Q-network (DQN) technique. It 

generates a large amount of useful data by collaborating with a reinforcement learning 

agent and employing an -greedy technique. The first step in the process is to preprocess 
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the PolSAR data to minimize the effect of speckle noise and extract multiple features. 

Then, the extracted features and the corresponding training images are input into a 

deep reinforcement learning model tailored specifically for PolSAR image 

classification. The experiment results showed that the proposed method had superior 

classification performance compared to conventional supervised classification 

techniques like convolutional neural networks, random forests, and linear support 

vector machines with L2 losses. (Chen-Fu Chien, Yun-Siang Lin & Sheng-Kai 

Lin,2020). 

Another research study proposed a way to enhance the accuracy of classifying 

polarimetric synthetic aperture radar (PolSAR) images using deep learning techniques. 

The approach involves pre-treating the images by reducing their dimensionality, 

breaking them down and rebuilding them using wavelet techniques, applying 

anisotropic filtering, and combining the images into gr $ayscale. The processed images 

are then fed into a DeepLabV3+ deep learning architecture for training. The results 

showed that this method resulted in a 2.3%–3.0% increase in the Kappa coefficient, 

which measures classification accuracy. This improvement highlights that the 

proposed method effectively improves the classification accuracy of PolSAR images 

through image preprocessing without the need for additional stacking. (Mohsen Jafari, 

Yasser Maghsoudi,2015). 

A method has been proposed that uses a unique deep learning network to 

automatically extract features from raw input data and include spatial information 

between pixels in PolSAR images in the input data. The deep structured feature 

network (DSFN) requires fewer parameters to be adjusted during pre-training and fine-

tuning compared to traditional deep networks. The proposed method was tested using 

real PolSAR data and was found to be efficient with a higher classification accuracy 

compared to conventional deep networks. (Yongqing Wang, Yanbo Luo, Hao Li, and 

Qiushi Chen,2022). 

G. Research Objective and Motivation: 

The purpose of this study is to find the best method for classifying land based 

on polarimetric characteristics using PolSARpro software and L-band AIRSAR 

imagery from Flevoland, which has a resolution of 1024 x 750 pixels. The study used 

a pre-existing set of 15 categories as a reference. The results showed that deep learning 
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methods, including CNNs, were successful in interpreting PolSAR data and generally 

performed better than traditional classifiers. However, the performance of deep 

learning networks is greatly influenced by the number of labeled samples available. 

The findings of the study provided insight into the most effective method for PolSAR 

image classification. 

The study aimed to compare the accuracy of PolSAR data classification 

between traditional classifiers and deep learning methods. Specifically, the study used 

a support vector machine (SVM) classifier and a Complex-Valued convolutional 

neural network (CV-CNN) model. The goal of the study is to determine the most 

effective method for land classification using a dataset that consists of 15 categories. 

The sample data used in the study was L-band AIRSAR imagery from Flevoland. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

13 

 

II. POLSAR FEATURE EXTRACTION 

A. Introduction 

Feature extraction is a technique used to reduce the number of resources 

required to analyze large sets of data. The process involves transforming the original 

dataset into a set of illustrative features that briefly and precisely represent the original 

information. This is done to make the data more manageable and reduce the 

computational resources required for analysis. The goal of feature extraction is to 

remove unnecessary data and minimize the memory and processing power needed to 

analyze the data. 

The analysis of complex datasets can be a challenging task due to the high 

number of variables involved. This can result in overfitting, which is when the 

classification algorithm is too tailored to the training samples, affecting its ability to 

generalize to new samples. To address this, feature extraction is used to reduce the 

number of variables and make the data more manageable for analysis. This process 

can also help preserve sensor-specific information in the case of data from multiple 

sensors. Properly extracted features can provide a physical interpretation of the target 

being observed. Another related step, feature selection, involves choosing a subset of 

features to identify the most valuable information for a specific application. (Si-Wei 

Chen,2022). When it comes to analyzing PolSAR data, the process of feature 

extraction involves analyzing the intensity, polarimetric, and texture information of 

the data. This can be achieved through different techniques, including statistical 

analysis, geometric methods, and the extraction of textural features. The objective is 

to identify the most significant features that can be utilized to represent the information 

in a more concise and meaningful manner. 

PolSAR data contains complex values that are challenging to use directly in 

machine learning algorithms. Therefore, feature extraction is an essential step in the 

analysis of PolSAR data. Support Vector Machine (SVM) and Convolutional Neural 

Network (CNN) are two popular algorithms used for PolSAR data classification, and 

they differ significantly in their approaches to feature extraction. SVM requires 

explicit feature extraction from the complex valued PolSAR data. Three common 

methods for feature extraction are the Pauli, Cloude-Pottier, and Huynen 
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decompositions. These methods transform the complex data into real-valued features 

that can be used as input to the SVM algorithm. The feature extraction process is 

typically the same for all applications of SVM to PolSAR data. In contrast, CNNs can 

learn relevant features for classification directly from the PolSAR data without explicit 

feature extraction. The PolSAR data is used as input to the network, and the network 

is trained to learn features that are relevant for classification. The CNN network 

typically consists of convolutional layers that learn spatial features and fully connected 

layers that perform classification. CNNs are better suited for larger datasets and are 

better at learning complex features. In summary, SVM requires explicit feature 

extraction from the PolSAR data, while CNNs can learn features directly from the 

data. SVM is generally more suited for smaller datasets, while CNNs can handle larger 

datasets and are better at learning complex features. (S. Chen and C. Tao,2018). 

B. Scattering Matrix 

 The scattering matrix is a crucial tool for understanding the scattering 

characteristics of an object in polarimetric radar data. It is a 2x2 matrix that 

summarizes the polarimetric information of the target being analyzed and is made up 

of complex numbers that represent the amplitude and phase of the radar signals 

returned to the sensor with different polarizations. 

For PolSAR data, the scattering matrix is defined as: 

S = [
𝑆ℎℎ 𝑆ℎ𝑣

𝑆𝑣ℎ 𝑆𝑣𝑣
]              (2.1) 

Where 𝑆ℎℎ, 𝑆ℎ𝑣, 𝑆𝑣ℎ, and 𝑆𝑣𝑣 are the elements of the matrix and represent the 

backscattered radar signals for horizontal-horizontal (HH), horizontal-vertical (HV), 

vertical-horizontal (VH), and vertical-vertical (VV) polarizations, respectively. The 

elements of the scattering matrix can be calculated from the radar signals using the 

following equations: 

𝑆ℎℎ = (
1

𝑁
) ∑ (|ℎℎ𝑖|

2)𝑖=𝑁
𝑖=1                      (2.2) 

𝑆ℎ𝑣 = (
1

𝑁
) ∑ (|ℎ𝑣𝑖|

2)𝑖=𝑁
𝑖=1                    (2.3) 

𝑆𝑣ℎ = (
1

𝑁
) ∑ (|𝑣ℎ𝑖|

2)𝑖=𝑁
𝑖=1                    (2.4) 
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𝑆𝑣𝑣 = (
1

𝑁
) ∑ (|𝑣𝑣𝑖|

2)𝑖=𝑁
𝑖=1                     (2.5) 

Where N is the number of pixels in the image, ℎℎ𝑖, ℎ𝑣𝑖, 𝑣ℎ𝑖, and 𝑣𝑣𝑖 are the 

backscattered radar signals for the i-th pixel. 

C. Covariance and Coherency Matrix 

The 𝐶3 matrix (also known as the volume scattering covariance matrix) is a 

3x3 matrix that describes the second-order statistical properties of the backscattered 

radar signals for a specific scattering mechanism. The elements of the matrix are 

calculated as the covariance between the different channels of the radar signals. The 

𝐶3 matrix is defined as: 

𝐶3 = [

𝐶3ℎℎ
𝐶3ℎ𝑣

𝐶3𝑣ℎ

𝐶3𝑣ℎ
𝐶3𝑣𝑣

𝐶3𝑣𝑣

𝐶3ℎℎ
𝐶3ℎ𝑣

𝐶3𝑣ℎ

]               (2.6) 

Where 𝐶3ℎℎ
, 𝐶3ℎ𝑣

, and 𝐶3𝑣𝑣
 are the elements of the matrix and represent the covariance 

between the backscattered radar signals for horizontal-horizontal (HH), horizontal-

vertical (HV), and vertical-vertical (VV) polarizations, respectively. 

The elements of the 𝐶3 matrix can be calculated using the following equations: 

C3hh
= (

1

N
) ∑ [hhi − mu3hh

](hhi − mu3hh
)Ti=N

i=1               (2.7) 

C3vh
= (

1

N
) ∑ [vhi − mu3vh

](vhi − mu3vh
)Ti=N

i=1               (2.8) 

C3hv
= (

1

N
) ∑ [hvi − mu3hv

](hvi − mu3hv
)Ti=N

i=1                   (2.9) 

C3vv
= (

1

N
) ∑ [vvi − mu3vv

](vvi − mu3vv
)Ti=N

i=1                (2.10) 

The coherency matrix is a 3x3 matrix that describes the coherence between the 

different channels of the radar signals. The elements of the coherency matrix are 

calculated as the normalized cross-covariance between the different channels of the 

radar signals. The coherency matrix is defined as: 

T =[
T11 T12 T13

T21 T22 T23

T31 T32 T33

]                  (2.11) 
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Where 𝑇11, 𝑇12, 𝑇13, 𝑇22, 𝑇23 and 𝑇33 are the elements of the matrix and represent the 

coherency between the backscattered radar signals for different polarizations. The 

elements of the coherency matrix can be calculated using the following equations: 

T11 = (Chh − |𝑚𝑢ℎℎ|2)/(|Ehh|2)                                      (2.12) 

T12 = (Chv − Re{𝑚𝑢ℎ𝑣 ∗ 𝑚𝑢ℎℎ
∗})/(|Ehh| ∗ |Ehv|)           (2.13) 

T13 = (Cvh − Re{𝑚𝑢𝑣ℎ ∗ 𝑚𝑢ℎℎ
∗})/(|Ehh| ∗ |Ehv|)           (2.14) 

T21 = (Chv − Re{𝑚𝑢ℎ𝑣 ∗ 𝑚𝑢𝑣𝑣
∗})/(|Ehh| ∗ |Evv|)           (2.15) 

T22 = (Cvv − |𝑚𝑢𝑣𝑣|2)/(|Evv|2)                                            (2.16) 

T23 = (Cvh − Re{𝑚𝑢𝑣ℎ ∗ 𝑚𝑢𝑣𝑣
∗})/(|Evv| ∗ |Ehv|)             (2.17) 

T31 = (Cvh − Re{𝑚𝑢𝑣ℎ ∗ 𝑚𝑢ℎ𝑣
∗})/(|Ehh| ∗ |Evv|)             (2.18) 

T32 = (Cvh − Re{𝑚𝑢𝑣ℎ ∗ 𝑚𝑢ℎ𝑣
∗})/(|Evv| ∗ |Ehv|)             (2.19) 

T33 = (Cvv − |𝑚𝑢𝑣ℎ|2)/(|Ehv|2)                                             (2.20) 

 

Where 𝐶ℎℎ, 𝐶ℎ𝑣, and 𝐶𝑣𝑣 are the elements of the covariance matrix, 𝑚𝑢ℎℎ, 𝑚𝑢ℎ𝑣 and 

𝑚𝑢𝑣𝑣 are the mean of the respective channel, 𝐸ℎℎ, 𝐸ℎ𝑣 and 𝐸𝑣𝑣 are the mean of the 

respective channel. 

D. Feature Extraction 

Feature extraction is a technique used to condense multiple data groups into a 

more manageable size, allowing for greater control over the data. This process is 

necessary as working with large, unfiltered data sets can consume a significant amount 

of computational resources. By implementing feature extraction, we can reduce the 

number of resources required for data processing while still maintaining important 

information.  Table 2 provides an overview of some of the most used features in this 

process, along with a brief definition of each feature. (M.AL-Bayati,2020). 
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Table 2. Some of the most used features with definition 

Feature Description  Definition  

 

Original 

features 

 

Scattering matrix     

 Covariance matrix   

Coherency matrix                               

[S] 

[ ] 

[ ] 

 

 

 

 

Decomposition 

feature 

 

 

Pauli decomposition  

𝛼 = |
𝑆ℎℎ + 𝑆𝑣𝑣

√2
| 

𝛽 = |
𝑆ℎℎ − 𝑆𝑣𝑣

√2
| 

𝛾 = |
𝑆ℎ𝑣 + 𝑆𝑣𝑣

√2
| 

Huynen decomposition    

Krogager decomposition    

Entropy\Anisotropy\Alpha    

Barnes    

Freeman Durden    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

18 

 

III. DATA CLASSIFICATION 

A.  Target Decomposition 

Target decomposition is a method utilized in machine learning to break down 

a complicated target variable into multiple simpler parts. This approach is beneficial 

when the target variable is composed of several underlying factors or features, and the 

objective is to comprehend and forecast the connections between these factors and the 

target variable. By breaking down the target variable into simpler components, it 

becomes easier to pinpoint the primary factors that influence the target variable and to 

construct more precise predictive models. 

In target decomposition, there are two methods to decompose a target variable: 

o Coherent target decomposition is a method of breaking down the target 

variable into components that are directly related to the original target 

variable and retain the majority of its information. These components 

are usually easy to interpret and have a clear physical meaning. 

o Incoherent target decomposition is a technique where the complex 

target variable is broken down into multiple components that are not 

directly related to the original target variable and do not retain much of 

its information. These components are often difficult to interpret and 

lack a clear physical meaning. 

Coherent target decomposition is typically chosen when it is important to understand 

and interpret the underlying factors that influence the target variable, whereas 

incoherent target decomposition is mainly used when the main objective is to extract 

features that can be used for prediction. 

1. Pauli Decomposition  

The Pauli decomposition is a technique used to decompose a complex-valued 

PolSAR image into three separate images, each representing a different polarization 

state. The method is based on the Pauli matrices, which are a set of three 2x2 matrices 

that serve as a basis for the space of 2x2 complex matrices. The Pauli decomposition 

helps to separate the different polarization states in a PolSAR image, providing more 

information about the scattering mechanism and the nature of the target. 
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The decomposition is performed by taking the inner product of the complex 

valued PolSAR image with each of the Pauli matrices, resulting in three images, each 

of which represents a different polarization state. The scattering S matrix is expressed 

as the complex sum of the Pauli matrices, where each basis matrix is connected with 

an elementary scattering process. (Jong, Pottier.p:214). 

𝑆 = [
𝑆ℎℎ 𝑆ℎ𝑣

𝑆𝑣ℎ 𝑆𝑣𝑣
] =

𝑎

√2
[
1 0
0 1

] +
𝑏

√2
[
1 0
0 −1

] +
𝑐

√2
[
0 1
1 0

] +
𝑑

√2
[
0 −𝑗
𝑗 0

]                (3.1) 

where a, b, c, and d are all complex and are given by: 

𝑎 =
𝑆ℎℎ+𝑆𝑣𝑣

√2
                𝑏 =

𝑆ℎℎ−𝑆𝑣𝑣

√2
                 𝑐 =

𝑆ℎ𝑣+𝑆𝑣ℎ

√2
               𝑑 = 𝑗

𝑆ℎ𝑣−𝑆𝑣ℎ

√2
          (3.2) 

The application of the Pauli decomposition to deterministic targets is a 

coherent composition of four scattering mechanisms: the first is single scattering from 

a plane surface (single or odd-bounce scattering), the second and third are diplane 

scattering (double or even-bounce scattering) from corners with relative orientations 

of 0 and 45, respectively, and the final element is all the antisymmetric components of 

the scattering S matrix. These interpretations are based on an examination of the 

properties of the Pauli matrices when their wave polarization changes. 

In the monostatic case, where 𝑆ℎ𝑣 = 𝑆𝑣ℎ, the Pauli matrix basis can be reduced to the 

first three matrices leading to d =0. It follows the Span value given by: 

𝑆𝑝𝑎𝑛 = |𝑆ℎℎ|2 + 2|𝑆ℎ𝑣|2 + |𝑆𝑣𝑣|2 = |𝑎|2 + |𝑏|2 + |𝑐|2            (3.3) 

By decomposing the complex-valued PolSAR image into these three different images, 

the Pauli decomposition allows for the extraction of the polarimetric information of 

the scene. The co-polarized (HH or VV) and cross-polarized (HV or VH) images are 

used to extract the polarimetric information of the scene. (Si-Wei Chen 2022). The 

total power image is used as a reference. After the decomposition, these images can be 

used as input to various classification algorithms, such as Random Forest, Support 

Vector Machine, and Neural Networks, to classify the image based on the polarization 

information. It's important to note that the Pauli decomposition is a pre-processing step 

for PolSAR image classification and is not a classification algorithm by itself. 
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B. Unsupervised Classification  

Unsupervised classification algorithms categorize images without any previous 

knowledge of the surface, obviating the need for ground truth maps or training 

samples. This classification is performed automatically by locating clusters based on 

a particular parameter. There are three benefits to using this technique. To begin with, 

as previously noted, prior knowledge of the target to be classified is not necessary for 

the initial isolation of the pixels of the image. Unsupervised approaches also reduce 

human errors because the analyst is not needed to make repeated decisions throughout 

the categorization process. Supervised classification may miss certain known 

categories, while unsupervised classification takes them into account. However, 

unsupervised classification also has its drawbacks, such as limited control by the 

expert over the categories selected by the classification method and a lack of 

correlation between the selected information categories and the natural groups of 

spectral categories. (Umut, Ö. 2020). 

The study will apply various unsupervised techniques such as H/alpha/A 

decomposition, Freeman and Durdan, and Huynen decomposition, which will be 

analyzed and evaluated using MATLAB. 

2. H/Alpha/A Decomposition Theorem 

H/alpha/A decomposition is a technique used to decompose a PolSAR image 

into three components: the HH, HV, and VV channels. These channels are also known 

as the H-alpha-A decomposition. 

The H-alpha-A decomposition assumes that the scattering mechanisms of a target can 

be modeled as a combination of three types of scattering: isotropic, volumetric, and 

double-bounce. The H-alpha-A decomposition uses the coherency matrix of the 

PolSAR data to separate these three scattering mechanisms into three channels. The 

HH channel is related to the isotropic scattering, the HV channel is related to the 

volume scattering, and the VV channel is related to the double-bounce scattering. 

𝑇3 Coherency matrix can be written as: 

𝑇3 = 𝑈3Σ𝑈3
−1                    (3.4) 

Where ∑ 3 x 3 is diagonal matrix with non-negative reel elements, contain the T3 

eigenvalues. 
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Σ = [

𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

]               (3.5)  

While  𝑈3 = [𝑈1, 𝑈2, 𝑈3]  is a 3x3 eigenvectors matrix of the T3 matrix. The 

eigenvector of the averaged coherency matrix can be written us: 

𝑈 = [cos 𝛼𝑒𝑗𝜙   sin 𝛼 cos 𝛽𝑒𝑗(𝛿+𝜙)   sin 𝛼 sin 𝛽𝑒𝑗(𝛾+𝜙)]𝑇             (3.6) 

After finding the eigenvalues and the eigenvectors of 𝑇3, it is now possible to calculate 

the entropy and alpha. H/alpha/A decomposition provides scattering information of 

the surface, and it is often used for the classification of PolSAR images.  

a. Polarimetric scattering Entropy (H) 

Entropy is a measure of the impurity or disorder of a system. In the context of 

image classification, entropy is often used as a parameter to measure the homogeneity 

of a segmented image. In information theory, the entropy of a random variable X is 

defined as: 

𝐻 =  − ∑ 𝑃𝑘 log𝑁(𝑃𝑘)𝑁
𝑘=1                       (3.8) 

Where N is the polarimetric dimension, and 𝑃𝑘 the pseudo-probabilities determined 

from the eigenvalues like: 

𝑃𝑘=  
𝜆𝑘

∑ 𝜆𝑖
𝑁
𝑖=1

                             (3.9) 

In image classification, the entropy of a segmented image serves as a measure of its 

homogeneity. If the entropy is high, it means the segments are diverse and not 

homogeneous, whereas a low entropy value indicates that the segments are 

homogeneous. The entropy is used to assess the effectiveness of unsupervised 

classification algorithms, with low entropy and high homogeneity being desirable 

outcomes. It is also used to judge the quality of the segmentation process. If the entropy 

is high, it suggests that the segmentation is poor, whereas a low entropy value indicates 

good segmentation. (S. Chen and C. Tao,2018). 

b. Polarimetric scattering parameter α 

In the context of radar remote sensing, the polarimetric scattering parameter α 

is a dimensionless parameter that is used to describe the scattering properties of a 



 

 

22 

 

target. The scattering angle is the third relevant parameter; this represents the type of 

scattering mechanism in play. The angle is defined as: 

𝛼 = ∑ 𝑃𝑖
𝑁
𝑖=1 𝛼𝑖                                    (3.10)    

When α approaches π/4, this represents the volume scattering component; when α is 

π/2, this represents the dihedral scattering component; and when α is 0, this represents 

the odd scattering component. (Zhou, Wang, 2016). α can be used to classify different 

types of scatterers and surfaces such as vegetation, soil, water, man-made structures, 

and urban areas. For example, vegetation typically has a low value of α, while urban 

areas have a high value of α. It is used to extract different scattering information from 

a target, which is important for the classification of radar images, and it is usually 

combined with other parameters like Entropy and other polarimetric parameters to get 

a more accurate classification. 

 

Figure 4. 2-dimensional H/ α 

c. Polarimetric scattering parameter A 

The polarimetric scattering parameter A is another parameter used in the 

context of radar remote sensing to describe the scattering properties of a target. It is 

defined as the ratio of the co-polarization power to the total power. The polarimetric 

scattering parameter A can be defined as: 

𝐴 =  
𝜆2−𝜆3

𝜆2+𝜆3
                    (3.11) 

With 𝜆1> 𝜆2 > 𝜆3 > 0. 

The value of A ranges from 0 to 1, where a value of 0 indicates completely cross-

polarized scattering and a value of 1 indicates completely co-polarized scattering. A is 

related to the degree of depolarization of the target, and it can be used to classify 
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different types of scatterers and surfaces such as vegetation, soil, water, man-made 

structures, and urban areas. For example, vegetation typically has a low value of A, 

while urban areas have a high value of A. It is used to extract different scattering 

information from a target, which is important for the classification of radar images, 

and it is usually combined with other parameters like entropy and other polarimetric 

parameters to get a more accurate classification. 

3. Freeman-Durden three-component decomposition 

The Freeman-Durden three-component decomposition is frequently employed 

in the classification of PolSAR pictures to obtain information about the scattering 

capabilities of the various targets in the image. By decomposing the image into the 

isotropic, volume, and surface scattering components, it is possible to identify different 

types of land cover and vegetation. For example, the isotropic scattering component 

can be used to identify areas of water, the volume scattering component can be used 

to identify areas of vegetation, and the surface scattering component can be used to 

identify areas of urban or man-made structures. Once the image has been decomposed 

into its three scattering components, various classification techniques can be applied 

to the resulting channels to classify the image into different land cover classes. 

Commonly used techniques include clustering algorithms like k-means, decision trees, 

and support vector machines. (G. Mullissa,2019). 

The decomposition of the coherency matrix into three scattering components using 𝑃𝑑, 

𝑃𝑠, and 𝑃𝑣 is done differently. The decomposition is based on the following equation: 

𝑆 = 𝑃𝑑𝑠_𝑖𝑠𝑜 + 𝑃𝑠𝑠_𝑣𝑜𝑙 + 𝑃𝑣 ∗ 𝑆𝑠𝑢𝑟                (3.12) 

Where S is the coherency matrix, 𝑃𝑑𝑠_𝑖𝑠𝑜 is the backscattering power of the isotropic 

component, 𝑃𝑠𝑠_𝑣𝑜𝑙 is the backscattering power of the volume component, Pv is the 

backscattering power of the surface component, 𝑆𝑖𝑠𝑜, 𝑆𝑣𝑜𝑙, and 𝑆𝑠𝑢𝑟are the scattering 

matrices of the three scattering components. 

 Siso = [1,0,1]T    is the isotropic scattering matrix. 

 Svol = [cos(2φ), sin(2φ), 0]T is the volume scattering matrix. 

 Ssur = [cos(2θ), 0, sin(2θ)] T is the surface scattering matrix. 

Where 𝜑 is the phase angle and 𝜃 is the scattering angle. 
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𝑃𝑑, 𝑃𝑠, and 𝑃𝑣 can be calculated from the coherency matrix elements using the 

following equations: 

𝑃𝑑 =
(𝜎ℎℎ+𝜎𝑣𝑣)

2
                     (3.13) 

𝑃𝑠 = 𝜎ℎℎ − 𝑃𝑑                     (3.14) 

𝑃𝑣 =
(𝜎𝑣𝑣+𝜎𝑑)

2
                       (3.15) 

In general, 𝑃𝑆, 𝑃𝑑 and 𝑃𝑣 are used to generate RGB image bleu, red and green 

respectively. The coherency matrix is a 3x3 matrix that describes the statistical 

properties of the radar backscatter. It is calculated from the radar data using the 

following elements: 

▪ 𝜎ℎℎ =< (𝑆ℎℎ)2 >  is the average of the square of the backscattered 

signal in the horizontal-horizontal (HH) polarization. 

▪ 𝜎ℎ𝑣 =< 𝑆ℎℎ ∗ 𝑆ℎ𝑣 >  is the average of the product of the backscattered 

signal in the horizontal-horizontal (HH) polarization with the 

backscattered signal in the horizontal-vertical (HV) polarization. 

▪ 𝜎𝑣𝑣 =< (𝑆𝑣𝑣)2 > is the average of the square of the backscattered 

signal in the vertical-vertical (VV) polarization. 

Where < > denotes the averaging operation, 𝑆ℎℎ is the complex backscattered signal 

in the HH polarization and 𝑆ℎ𝑣 is the complex backscattered signal in the HV 

polarization. 

4. Huynen Decomposition 

The Huynen Decomposition can also be used as an unsupervised classification. 

method for PolSAR data. In this approach, the decomposition is applied to the entire 

image, and the scattering components are used as features for clustering. The Huynen 

decomposition can be applied to the coherency matrix (S) of each pixel in a PolSAR 

image using the following steps: 

▪ Calculate the degree of polarization A: 

𝐴 = (𝜎ℎℎ + 𝜎𝑣𝑣)/(𝜎ℎℎ + 𝜎ℎ𝑣 + 𝜎𝑣𝑣)           (3.16) 

Where 𝜎ℎℎ, 𝜎ℎ𝑣 and 𝜎𝑣𝑣 are the elements of the coherency matrix S. 



 

 

25 

 

▪ Calculate the isotropic scattering matrix 𝑆𝑖𝑠𝑜: 

𝑆𝑖𝑠𝑜 = [1,0,1]𝑇                                            (3.17) 

▪ Calculate the anisotropic scattering matrix 𝑆𝑎𝑛𝑖𝑠𝑜 : 

𝑆𝑎𝑛𝑖𝑠𝑜 = √(1 − 𝐴2)[cos(2𝜑), sin(2𝜑), cos(2𝜃)]𝑇           (3.18) 

Where 𝜑 and 𝜃 are the scattering phase angle and scattering angle respectively. 

▪ Calculate the isotropic and anisotropic scattering components: 

𝑃𝑖𝑠𝑜 = 𝐴𝜎ℎℎ + 𝐴𝜎𝑣𝑣                                                                                (3.19) 

𝑃𝑎𝑛𝑖𝑠𝑜 = √(1 − 𝐴2)(𝜎ℎℎ cos(2𝜑) + 𝜎ℎ𝑣 sin(2𝜑) + 𝜎𝑣𝑣 cos(2𝜃))        (3.20) 

Assign the pixel to a cluster based on the values of 𝑃𝑖𝑠𝑜 and 𝑃𝑎𝑛𝑖𝑠𝑜. 

 

Note that there are different ways to extract the scattering phase angle (𝜑) and 

scattering angle (𝜃) from the coherency matrix, and some methods may use different 

equations than the ones presented here. Also, the clustering step can be applied using 

different clustering algorithms, and it's usually done using software such as Matlab or 

ENVI. 
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IV. METHODS USED FOR POLSAR DATA CLASSIFICATION 

A. Supervised Classification  

Supervised classification is a method of classifying PolSAR data by 

referencing labeled instances. This method employs prior information about the 

surface types that appear in the image to develop a predictor to recognize and 

categorize the various surfaces in the image. The process of supervised classification 

typically involves the following steps: 

o Collect a set of labeled examples that are representative of the different 

surface types present in the image. These examples are used to train the 

classifier. 

o Extract features from the PolSAR data that are relevant to the 

classification task. These features may include backscattering power, 

scattering angles, and polarimetric parameters. 

o Train a classifier, such as a random forest or support vector machine, 

using the labeled examples and the extracted features. 

o Apply the trained classifier to the entire image to classify each pixel 

into one of the different surface types. 

The process of categorizing PolSAR data through supervision involves the utilization 

of various methodologies. These methodologies are used to categorize image pixels 

based on previously labeled examples. Some frequently employed techniques include 

the Mahalanobis distance, minimum distance classifier, K-nearest neighbors, 

maximum probability classification, and linear and radial support vector machines. 

The result of this categorization process is a thematic map, which assigns a specific 

class label to each pixel. The success of the classification process is dependent on the 

quality and accuracy of the chosen training data; therefore, it's crucial to have an ample 

supply of high-quality training samples to establish the discriminatory rules between 

classes. (Guo, Wang, Gao, Shi, Zhang, Hou,2015). 
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B. Support Vector Machine (SVM) 

 Support Vector Machines (SVMs) are a type of machine learning algorithm 

designed to minimize structural errors and enhance the generalization capability of 

machine learning. They aim to minimize errors in predictions that occur due to the use 

of limited data during training, thereby producing accurate classification results even 

with limited labeled samples. The effectiveness of SVMs has led to the development 

of various other algorithms based on this technique, such as the system proposed by 

Maghsoudi et al., which incorporates feature selection using a non-parametric 

evaluation function and SVM. Additionally, SVM has been combined with radial basis 

kernel functions and stochastic distance methods to improve the reliability of region-

based categorization.  

Support Vector Machines (SVMs) are a widely used machine learning 

algorithm for supervised learning tasks, including both classification and regression. 

The objective of SVMs is to find the optimal boundary, also known as a hyperplane, 

that separates the data into different classes with maximum efficiency. This boundary 

is selected so as to maximize the margin, which is the distance between the boundary 

and the closest data points from each class. The essence of SVMs is to find a boundary 

that effectively divides the data into different classes. One of the significant advantages 

of SVMs is their ability to handle non-linearly separable data, meaning data that cannot 

be divided by a straight line. (W. Liu, J. Yang, P. Li, et al,2018). 

 

Figure 5.  Linear support vector machine 

SVMs can be adapted to handle non-linear boundaries through the use of the kernel 

trick. This technique transforms the data into a new, higher-dimensional space where 

it becomes linearly separable. In industry, SVMs are widely applied in areas such as 

image classification, text classification, and bioinformatics, due to their high precision 

and capability of processing high-dimensional data. However, the choice of kernel 
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function and selection of parameters can have a significant impact on the performance 

of SVMs, and large data sets can consume a considerable amount of computational 

resources. 

The term "feature space" in the context of support vector machines (SVMs) 

refers to the dimensional space in which the data points are depicted for analysis. In a 

classic SVM setup, the feature space is the same as the original input space. 

Conversely, in a kernel SVM, the data is transformed into a higher-dimensional space, 

which becomes the feature space, before being used in the categorization process. The 

kernel function, represented as K (x, y), plays a crucial role in projecting the data points 

into the higher-dimensional feature space used in kernel SVM. (C. Lardeux, P.Louis 

Frison,2009). The kernel function must satisfy the Mercer condition, which ensures 

that the inner product between the transformed data points can be computed. This is 

critical in SVM, as the classification boundary is determined based on the inner 

product of the data points in the feature space. Three common types of kernel functions 

that can be used in SVM are: 

▪ Sigmoid:  𝐾(𝑥𝑖, 𝑥) = tan(𝛾𝑥𝑗
𝑇 . 𝑥𝑖 + 𝑝)                                          (4.1) 

▪ Polynomial:  𝐾(𝑥𝑖, 𝑥) = tan((𝛾𝑥𝑗
𝑇 . 𝑥𝑖 + 𝑝)𝑟 with p>0                    (4.2) 

▪ Radial basis function:   𝐾(𝑥𝑖, 𝑥) = 𝑒𝑥𝑝
−

(𝑥𝑗−𝑥𝑖)

2𝜎2                                  (4.3) 

Each of these kernel functions is defined by its own parameters, like p, that must be 

set before training. 

The application of a kernel function in SVM enables the classification to be 

performed by finding the hyperplane in a high-dimensional feature space instead of 

the original input space. This approach can be particularly advantageous when the data 

cannot be separated linearly in the original space. The kernel function transforms the 

input data into a new feature space where the data points can be split using a linear 

boundary. 

C. Mahalanobis Distance 

The Mahalanobis distance is a numerical representation of the difference 

between a point and a statistical distribution. It calculates the distance from a given 

point to the mean of the dataset, taking into consideration the covariance of the data. 
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The formula for the Mahalanobis distance between a point x and a distribution with a 

mean vector μ and covariance matrix S is: 

𝐷(𝑥) = √(𝑥 − 𝜇)𝑇 𝑆−1(𝑥 − 𝜇)                (4.4) 

Where x is a column vector representing the point, μ is the mean vector of the 

distribution, S is the covariance matrix and T denotes transpose. 

The Mahalanobis distance is a way of measuring the distance between a point 

and a distribution. It takes into account the covariance of the data and allows you to 

compute the distance while taking into account the correlation between variables. The 

Mahalanobis distance can be used in various fields, such as machine learning, image 

processing, and pattern recognition. It is particularly useful when the data has a non-

uniform distribution or when the variables are correlated. In multivariate statistical 

process control, it is used to identify patterns in multivariate data that are not easily 

noticeable in univariate data. In the application of Synthetic Aperture Radar (SAR) 

data, the Mahalanobis distance is used to determine the error in matching two classes 

(M1 and M2) with the input feature vector (v). The minimum-error classifier finds the 

error between the feature vector and the mean of each class and selects the one with 

the minimum error. as illustrated in figure 6. 

 

Figure 6.  Multiple classes using the Mahalanobis distance. 

 

D. Convolutional Neural Network (CNN) 

A convolutional neural network (CNN) can be utilized for the task of 

classifying images obtained from polarimetric synthetic aperture radar (PolSAR) 
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systems. This type of deep learning model is specifically designed to analyze and 

recognize patterns in image data using a mathematical operation called convolution. 

The CNN typically consists of multiple layers, including: 

 Convolutional layers: A convolution operation is performed on the 

input data using these layers, typically using a set of learnable filters. 

The convolution operation extracts features from the input data, and the 

filters are adjusted during training to optimize the extraction of relevant 

features. The convolutional layer applies the following equation:   

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (𝐼𝑛𝑝𝑢𝑡, 𝑊𝑒𝑖𝑔ℎ𝑡𝑠) + 𝐵𝑖𝑎𝑠 

 Pooling layers: These layers simplify the data by aggregating values in 

small areas of the input data, either by selecting the largest or 

computing the mean of these values. Pooling layers play a role in 

reducing processing requirements and making the data insensitive to 

small changes in position. The pooling layer applies the following 

equation: 

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑃𝑜𝑜𝑙𝑖𝑛𝑔_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝐼𝑛𝑝𝑢𝑡) 

 Fully connected layers: These layers are a type of neural network layer 

that makes a connection between each neuron in the current layer and 

every neuron in the next layer, much like a traditional multi-layer 

perceptron (MLP). The purpose of these layers is to make final 

decisions based on the features that have been extracted through the 

convolutional and pooling layers. The fully connected layer applies the 

following equation: 

𝑂𝑢𝑡𝑝𝑢𝑡 =  𝑤𝑥 + 𝑏 

 Activation function: These are used to introduce non-linearity in the 

output of each layer. Commonly used activation functions are ReLU, 

sigmoid, tanh, and softmax. The activation function applies the 

following equation: 

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 (𝐼𝑛𝑝𝑢𝑡) 

 Loss function: The purpose of the loss function is to evaluate the 

performance of the model and determine the error between the 
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predicted values and the actual values. The loss function quantifies this 

error and guides the optimization process in adjusting the model's 

parameters. The most frequently used loss functions are mean squared 

error and cross-entropy. 

 Optimizer: The optimizer updates the parameters of the network to 

reduce the value of the loss function. Popular optimization algorithms 

used in neural networks include Stochastic Gradient Descent (SGD), 

Adam, and RMSprop. These algorithms determine the direction in 

which the weights and biases should be adjusted in order to minimize 

the difference between the predicted output and the actual output. 

The CNN is trained using a large dataset of labeled PolSAR images; during the training 

process, the weights of the filters in the convolutional layers are adjusted to reduce the 

loss. After the training process, the CNN can be used to classify new PolSAR images 

by applying the trained filters to extract features and making decisions based on the 

final output of the network. (Wang,He, Liu, et al.2018). 

 

Figure 7. Understanding of Convolutional Neural Network (CNN) 

 

The ability of convolutional neural networks (CNNs) to routinely extract 

hierarchical features and get end-to-end classification is a key factor in their success 

in classifying images obtained from polarimetric synthetic aperture radar (PolSAR) 

systems. This is because CNNs can extract features at different levels of abstraction 

and perform the classification task all in one step, as opposed to traditional methods 

that rely on manual feature extraction. This makes CNNs more efficient and effective 

at image classification tasks, especially when it comes to PolSAR images. (Ronny 

Hänsch, O.H.2017). It's valuable to consider that adding more convolutional layers to 

a CNN can enhance its accuracy and ability to generalize, but also necessitates a larger 

training dataset for convergence to occur. In the context of PolSAR image 
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classification, shallow CNN models, with fewer than five convolutional layers, may 

outperform deep CNN models even though they have lower accuracy on average. This 

is due to the limited amount of data available in PolSAR benchmarks. 

1. Complex-Valued Convolutional Neural Network (CV-CNN) 

A CV-CNN can be utilized to identify and categorize objects based on the 

polarimetric characteristics of the radar signals they reflect, as seen in PolSAR data. 

This data provides information about the polarization state of objects and can be useful 

in separating various types of terrain, such as urban regions, water bodies, and forest 

areas. A CV-CNN can be trained to recognize patterns in the PolSAR data and then 

classify new data based on those patterns. 

A CV-CNN for PolSAR data classification works by training the network on a set of 

labeled PolSAR data. The labeled data is used to teach the network to recognize 

patterns in the data that are associated with different classes of land cover. The training 

process involves inputting the PolSAR data into the network, which is composed of 

multiple layers of artificial neurons. Each layer applies a set of mathematical 

operations to the data called convolution and pooling, which extract features from the 

data that are relevant to the classification task. (Cao, Wu, Zhang et al, 2019). 

The features extracted by the convolutional layers are then fed into fully connected 

layers, where they are processed and combined to determine the final classification of 

the input data. During training, the parameters of both the convolutional and fully 

connected layers are adjusted to optimize the accuracy of the network's decisions. 

After training, this network can be used to classify new, unlabeled PolSAR data by 

providing it as input and using the learned patterns to make predictions about its class. 

To measure the performance of the network, complex-valued is used to compare the 

network's predictions with the actual class labels of the data. 

The performance of a CV CNN can be determined through cross-validation by 

dividing the PolSAR dataset into training and testing portions. The network learns 

patterns from the training set, and its ability to classify unseen data is evaluated on the 

testing set. This process is repeated several times with various partition combinations 

to obtain a more precise evaluation of the network's overall performance. (Zhang, 

Wang, Xu, Ya-Qiu Jin,2017). 



 

 

33 

 

 

Figure 8. Framework of the CV-CNN model. 

 

 Convolution operation: 

𝑂(𝐼 + 1)𝑚 = 𝜀(𝐼 + 1)𝑚 = ∑ 𝑝 = 1𝑃𝜀(𝐼)𝑝 ∗ 𝜔(𝐼 + 1)𝑝 +

𝜓(𝐼 + 1)𝑚 = ∑ 𝑝 = 1𝑃Ψ(𝐼)𝑝 ∗ 𝜔(𝐼 + 1)𝑝              (4.5) 

The equation represents how the output feature map of a convolutional 

neural network (CNN) is calculated for a specific layer (l+1) and a 

specific position (m). This is done by taking the convolution of the 

input feature map of the previous layer (l) at position k with a set of 

filter banks (w) for the current layer (l+1) at position p and kernel K. 

The result of this convolution operation is then summed up over all 

possible positions (k) and kernel sizes (K) to produce a single value. 

This value is then added to a bias term (b) for the current layer (l+1) at 

position p. The real and imaginary parts (ξ and ψ) of the complex-

valued domain are considered in the calculation. The result is a 

weighted sum of the previous layer's output feature maps (ψ(l)p). 

 Nonlinear activation function: f(·) is the nonlinear activation function, 

usually represented as the sigmoid function. 

 Pooling layer: Max pooling and average pooling are two popular 

methods for reducing the spatial dimensions of the input feature maps 

in a pooling layer. The goal of pooling is to reduce computational cost 

and improve the network's invariance to small translations of the input 

data by simplifying the spatial structure of the feature maps and 

merging similar features into a single representation.  

 Fully connected layer: In a fully connected layer, every neuron in the 

current layer is connected to the input features from the previous layer. 

The output of this layer is calculated using a combination of the weight 
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matrix (W(L)), bias term (b(L)), and activation function (σ(·)). The 

activation function is typically represented by the softmax function for 

classification tasks, and the final output (O(L)) is the result of applying 

this activation function to the sum of the weighted input features and 

bias term. (Xie, Ma, Zhao, Liu, 2020). 

2. Configuration of (CV-CNN) 

The design of the CV-CNN model is shown in Figure 9 and is comprised of 

several key components, including input and output layers as well as two convolutional 

layers, one pooling layer, and one fully connected layer. The input layer has a size of 

12x12x6, which means that each patch of input data is 12x12 in size and has 6 

channels. The convolutional and pooling layers reduce the size of the feature maps, 

but if the size of the input data is smaller than 12x12, zero padding is used to maintain 

the desired depth for the network. The fully connected layer connects every neuron in 

one layer to every neuron in the next layer. 

The input layer has a size of 12x12x6, meaning each local patch has dimensions 

of 12x12 and 6 channels. The first convolutional layer consists of six filters with a size 

of 3x3x6 and a stride of 1. This results in six feature maps of size 10x10. The average 

pooling layer, with a pooling size of 2x2 and a stride of 1, is then applied, reducing the 

feature map size to 5x5. The second convolutional layer has a filter size of 3x3x6x12 

and creates 12 feature maps with a size of 3x3. (Zhang, Wang, Xu, Ya-Qiu Jin,2017). 

These 3-D feature maps are then reshaped into a 1-D vector with 108 neurons to serve 

as the fully connected layer. Finally, the output layer with c neurons is applied, where 

c is the number of classification classes. In the Flevoland dataset, c is equal to 15. 

 

Figure 9. Overall architecture of (a) CV-CNN 
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E. Machine and Deep Learning techniques for POLSAR classifications 

Traditional machine learning techniques like Support Vector Machaines 

(SVM) and Mahalanobis distance can be used for classification of land cover using 

POLSAR data. Here are some advantages and disadvantages of using these techniques 

compared to deep learning techniques like Convolutional Neural Networks (CNN) and 

Complex-Valued CNN (CV-CNN): 

 Advantages of using SVM and Mahalanobis distance for POLSAR data 

classification: 

1. Computationally efficient: SVM and Mahalanobis distance are 

computationally efficient compared to deep learning techniques like 

CNN and CV-CNN. This is particularly advantageous when dealing 

with large datasets, which can take a long time to train using deep 

learning methods. 

2. Interpretable: SVM and Mahalanobis distance are simple models that 

can be easily interpreted. The parameters and decision boundaries of 

these models can be easily visualized, which can help in understanding 

the classification results. 

3. Robust to noise: SVM and Mahalanobis distance are robust to noise 

and outliers in the data. This is particularly advantageous for POLSAR 

data, which can be affected by speckle noise. 

 Disadvantages of using SVM and Mahalanobis distance for POLSAR data 

classification: 

1. Limited capacity: SVM and Mahalanobis distance have limited 

capacity to learn complex features from the data. This can result in 

lower classification accuracy compared to deep learning techniques. 

2. Hand-crafted features: SVM and Mahalanobis distance require hand-

crafted features, which can be time-consuming and require domain 

expertise. This is in contrast to deep learning techniques, which can 

automatically learn features from the data. 
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3. Sensitivity to hyperparameters: SVM and Mahalanobis distance are 

sensitive to the choice of hyperparameters, such as the kernel function 

and distance metric. This can make the model selection process 

challenging and require cross-validation. 

 Advantages of using CNN and CV-CNN for POLSAR data classification: 

1. Automatic feature learning: CNN and CV-CNN can automatically 

learn features from the data, which can reduce the need for hand-crafted 

features and domain expertise. 

2. High capacity: CNN and CV-CNN have high capacity to learn complex 

features from the data, which can result in higher classification 

accuracy compared to traditional machine learning techniques. 

3. End-to-end learning: CNN and CV-CNN can learn end-to-end 

mappings from the input data to the output labels, which can result in 

better generalization and transferability of the learned features. 

 Disadvantages of using CNN and CV-CNN for POLSAR data classification: 

1. Computationally intensive: CNN and CV-CNN are computationally 

intensive and require high-end hardware, such as GPUs, to train and 

run. 

2. Black-box models: CNN and CV-CNN are complex models that can be 

difficult to interpret. The learned features and decision boundaries are 

not easily visualized, which can make it challenging to understand the 

classification results. 

3. Sensitivity to hyperparameters: CNN and CV-CNN are sensitive to the 

choice of hyperparameters, such as the number of layers, filter sizes, 

and learning rates. This can make the model selection process 

challenging and require cross-validation. 

The choice of classification method for POLSAR data depends on several factors, such 

as the complexity of the data, the size of the dataset, and the available computational 

resources. In general, deep learning techniques like CNN and CV-CNN have been 

shown to achieve higher classification accuracy compared to traditional machine 

learning techniques like SVM and Mahalanobis distance. (Rui, Hai, Zongjie, 
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Zongyong.2019). This is because deep learning methods can automatically learn 

complex features from the data, which can capture the underlying patterns in the data 

more effectively. 

However, deep learning techniques are computationally intensive and require high-

end hardware, such as GPUs, to train and run. In addition, deep learning models are 

more complex and harder to interpret compared to traditional machine learning 

models. Therefore, the choice between deep learning and traditional machine learning 

methods for POLSAR classification depends on the trade-off between accuracy and 

computational efficiency as well as the interpretability of the model. If high accuracy 

is the primary goal and computational resources are available, then deep learning 

techniques like CNN and CV-CNN may be preferred. However, if interpretability and 

simplicity are important and computational resources are limited, then traditional 

machine learning techniques like SVM and Mahalanobis distance may be more 

appropriate. 

In the experiment chapter, we will examine how each of these algorithms performs for 

the Flevoland dataset with 15 categories. We will evaluate which algorithm gives the 

highest overall accuracy and how it performs for each different category with varying 

numbers of samples.  
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V. DESIGN EXPERIMENTS 

A. AIRSAR Flevoland Dataset 

The proposed algorithm will be tested using the NASA/JPL AirSAR L-band 

PolSAR dataset. This dataset was acquired in 1989 from Flevoland in the Netherlands 

and is composed of a 4-look Pauli-RGB image (Figure 10) that depicts 15 different 

land cover categories, such as water, barley, peas, stem beans, beet, forest, bare soil, 

grasses, rapeseed, lucerne, wheat A, wheat B, buildings, potato, and wheat C. 

The image is represented using the Pauli matrix representation, which differentiates 

between different crops. In addition, a ground truth map (Figure 11) that uses color 

coding to indicate the different categories is also provided. L-band polarimetric SAR 

technology is particularly useful for identifying and classifying different crops in 

agricultural fields. 

 

                                                                                                     

 

                                                                        

 

The AirSAR L-band PolSAR image used in this study was acquired by 

NASA/JPL and has a resolution of 750x1024 pixels. However, it is crucial to carefully 

choose the training sets from the ground truth maps, as these maps may not have 

enough detail to accurately evaluate the classification performance. The chosen pixels 

from the training sets are then used for mahalanobis distance and svm supervised 

classification procedures. The classification accuracy is assessed by selecting enough 

pixels from each training set as a reference class-map, to generate statistically reliable 

results. 

Figure 10. Flevoland Pauli-RGB image 

Figure 11. Flevoland ground truth map 
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Table 3. Ground truth classes with their samples number on Flevoland data 

Number of 

classes 

Classes Ground 

Truth 

1 Water 30732 

2 Forest 17872 

3 Lucerne 10992 

4 Grass 10198 

5 Rapeseed 21293 

6 Beet 14628 

7 Potatoes 19459 

8 Peas 11548 

9 Stem beans 8565 

10 Bare soil 6020 

11 Wheat A 18494 

12 Wheat B 11480 

13 Wheat C 23621 

14 Barely 7901 

15 Building 798 

 

B. Supervised Mahalanobis Distance 

This is a process of preparing the data for a supervised machine learning 

algorithm. In this study, the data is the Flevoland ground truth. The first step is to apply 

the Mahalanobis distance classification to select different samples from the ground 

truth. Then, different sets of testing samples are selected for each class. After that, the 

ML distance in MATLAB is applied to find the training dataset with the highest 

accuracy. The process results in 192247 testing samples and 21354 training samples, 

with an accuracy result of 63.80% and 63.78%, respectively, after applying ML 

distance for the L-band.  The results suggest a high proportion of bare soil and the 

images can differentiate between classes, as indicated by the blue color in the image 

indicating surface scattering. 
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Figure 12. Results obtained by applying Supervised Mahalanobis Distance to the Flevoland data set 

1. Confusion Matrix 

The values in the confusion matrix are used to calculate various performance 

metrics such as accuracy, precision, recall, and F1 score, which help to understand the 

effectiveness of the classifier. The true positives (TP) are the number of instances that 

are correctly classified as positive. False positives (FP) are instances that are 

incorrectly classified as positive when they are actually negative. True negatives (TN) 

are instances that are correctly classified as negatives, while false negatives (FN) are 

instances that are incorrectly classified as negatives when they are actually positives. 

True Positives: Positive instances that were correctly classified.  

 False Positives: Incorrectly classified positive instances. 

 True Negatives: Correctly classified negative instances. 

 False Negatives: Incorrectly classified negative instances. 

Accuracy is defined as the total number of correct predictions divided by the total 

number of predictions made by the model. Precision is the ratio of true positive 

predictions to the total number of positive predictions made by the model. Recall, also 

known as sensitivity or the "true positive rate," is the ratio of true positive predictions 

to the total number of actual positive instances in the data. The F1-score is the 

harmonic mean of precision and recall and provides a single metric that balances both 

metrics. Specificity is the ratio of true negative predictions to the total number of actual 

negative instances in the data. These metrics provide valuable information about the 

performance of a classification model and help identify areas for improvement. 
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Figure 13. Confusion Matrix for Binary Datasets. 

The four parameters calculated to compare the performance of each model are: 

▪ Accuracy: Represents the amount of tests accurately classified by the 

classifier. 

Accuracy =
(True Positives + True Negatives)

(True Positives + True Negatives + False Positives + False Negatives)
 

▪ Precision: Refers to the accuracy of the classifier, specifically the rate 

at which the samples are correctly identified as positive among all the 

samples classified as positive in the test set. 

Precision =
True Positives

(True Positives + False Positives)
 

▪ Recall: Reflects the integrity of the model, also known as the detection 

rate or sensitivity of the model. It measures the successful labeling of 

positive samples in the test set. 

Recall =
True Positives 

(True Positives + False Negatives)
 

▪ F1-Score: Refers to the harmonic mean of Precision and Recall, which 

provides a balanced evaluation of both the false positive and false 

negative rates. 

F1Score = 2 ∗
(Precision ∗ Recall)

(Precision + Recall)
 

2.  Mahalanobis Training Confusion Matrix 

To create a confusion matrix, it is necessary to combine both the actual class 

labels and the predictions made by the classifier. The actual class labels are placed in 

columns, while the predictions made by the classifier are placed in rows. This forms a 

matrix with correct classifications along the diagonal from the top left to the bottom 

right. The number of samples used for training the model is 21354, with correct 
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classifications represented by the values along the diagonal of the matrix. The accuracy 

of the model is measured by comparing the actual class labels to the predictions made 

by the model, which is found to be 63.79%. 

 

Table 4. Mahalanobis Training Confusion matrix for flevolend. 

 

 

 

The Kappa coefficient is also used to assess the agreement between the actual 

class labels and the predictions made by the model, with the result of the Kappa value 

being 0.62, where a value of 1 indicates a perfect agreement and a value of 0 indicates 

no agreement. 
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Table 5. Trained samples and the accuracy of the resulted prediction compared with the true data. 

 Classes Training 

Samples 

Percentage 

1 Water 3073 60.20 

2 Forest 1787 64.24 

3 Lucerne 1099 59.96 

4 Grass 1019 57.51 

5 Rapeseed 2129 59.51 

6 Beet 1462 74.90 

7 Potatoes 1945 52.90 

8 Peas 1154 60.92 

9 Stem 

beans 

856 72.31 

10 Bare soil 602 91.20 

11 Wheat A 1849 55.76 

12 Wheat B 1148 66.11 

13 Wheat C 2362 69.86 

14 Barely 790 79.11 

15 Building 79 64.56 

 

3.  Mahalanobis Testing Confusion Matrix 

A confusion matrix is used during the testing phase to assess the accuracy of 

the machine learning model. The matrix compares the actual classifications with the 

predictions made by the model. The true classifications are listed in columns, while 

the predictions are in rows, and the correct classifications are shown along the 

diagonal. In the testing phase, 192,247 values were used, and an overall accuracy of 

63.80% was achieved by comparing the true data with the test results. 

An average accuracy of 66.26% was also obtained. The Kappa value measures 

the agreement between the actual classifications and the predictions made by the 

model. In this case, the Kappa value was approximately 0.62, which indicates a 

relatively good agreement between the actual and predicted classifications. 
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Table 6 Mahalanobis Testing Confusion matrix for Flevoland 

 

Table 7 . Tested samples and the accuracy of the resulted prediction compared with the true data. 

 Classes Testing 

Samples 

   Percentage 

1 Water 27659 60.39 

2 Forest 16085 63.67 

3 Lucerne 9893 60.21 

4 Grass 9179 57.49 

5 Rapeseed 19164 59.74 

6 Beet 13166 77.66 

7 Potatoes 17514 52.28 

8 Peas 10394 58.61 

9 Stem 

beans 

7709 73.43 

10 Bare soil 5418 92.01 

11 Wheat A 16645 55.21 

12 Wheat B 10332 67.67 

13 Wheat C 21259 69.11 

14 Barely 7111 77.88 

15 Building 719 68.57 
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C. Support Vector Machine Classification  

To evaluate the performance of the SVM classifier on the Flevoland dataset, 

the model was tested using a portion of the data. The training portion consisted of 

21354 samples, which were selected from the actual image after removing 10% of the 

data. The testing portion, on the other hand, consisted of 192247 samples that were not 

used in the training process. The results showed that the SVM classifier had an 

accuracy of 79.06 % on the training data and 77.96 % on the testing data after being 

applied to the L-band. 

The results of the predictions were represented in a confusion matrix for both 

the training and testing data, and the resulting image of the predictions was visualized 

using the imagesc function. Using the same imagesc function, the ground truth image 

was also read and visualized.  

 

Figure 14. Ground Truth for Flevoland data set 

1.  SVM Training Confusion Matrix 

To build the confusion matrix, it's necessary to gather both the actual 

classifications and the classifier's outputs in a single chart (Table 8). In this chart, the 

actual classifications are arranged in columns and the classifier's predictions in rows. 

There are 21354 values utilized for training, with the diagonal values from upper-left 

to lower-right in the confusion matrix indicating the values that have been accurately 

classified. The comparison between the actual data and the results of the trained data 

results in an overall accuracy of 79.06 percent, with an average accuracy of 75.51%. 

The Kappa coefficient, which measures the correlation between classifications and 

actual values, has a value of 0.77 in the training data. 

Table 8 illustrates the actual classification of each category in the Flevoland 

dataset along with the number of training samples used. The accuracy of the SVM 
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classifier's predictions is assessed by comparing these results to the actual 

classifications. 

Table 8. SVM Training Confusion matrix for Flevoland with Trained samples and the accuracy. 

 

2.  SVM Testing Confusion Matrix 

The performance of the SVM classifier on the Flevoland dataset was evaluated 

through the use of Confusion Matrices for both the training and testing data. The 

testing matrix compared the actual classifications with the classifier's predictions, with 

a total of 192,247 samples analyzed. The accuracy of the predictions was found to be 

77.96%, with an average accuracy of 74.71%. These findings indicate that the Kappa 

value for the testing data is approximately 0.76. 

The results presented in Table 9 depict the actual classifications and the number 

of tested samples in the Flevoland data, indicating the accuracy of the classifier's 

predictions when compared to the actual data. 

Table 9 . SVM Testing Confusion Matrix for Flevoland and the accuracy of the resulted prediction compared with 
the true data. 
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Figure 15.  Result-image of the predictions made by the SVM model. 

 

This is a representation of the results of the sample classification shown in 

figure 15. The "result_image" variable holds the class labels assigned to each sample 

by the SVM classifier. The "imagesc" function is used to display the "result_image" 

as a grayscale image, where each pixel's shade corresponds to a specific class label. 

The "imagesc" function scales the range of "result_image" so that the minimum value 

corresponds to the first color in the chosen colormap, and the maximum value 

corresponds to the last color in the colormap. 

 

Figure 16 . Result-image of SVM classifier after applying mask. 

D. Complex-Valued Convolutional Neural Network Classification 

The study was conducted on the Flevoland dataset, a subset of a complete 

POLSAR image captured by the NASA/Jet Propulsion Laboratory AIRSAR platform 

in 1989. The Flevoland dataset, which represents an agricultural area in the 

Netherlands, is a frequently used benchmark for POLSAR data classification research. 

Figure 17(a) depicts an RGB image created using the intensities with the Pauli 

decomposition, which has a resolution of 1024x750 pixels. The ground truth, shown 

in Figure 17(b), identifies 15 different classes, including stembeans, peas, forest, 

lucerne, three types of wheat, beet, potatoes, bare soil, grass, rapeseed, barley, water, 

and some buildings. The legend for the ground truth is displayed in Figure 17(c). 
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 For small regions like buildings, a zero-padding strategy is employed. For instance, a 

12x12 window centered at a building pixel near the edge will have its pixels outside 

the region filled with zeros. (Zhang, Wang, Xu,and Ya-Qiu, 2017). 

 

Figure 17. Flevoland data set. (a) Pauli RGB of POLSAR. (b) Ground truth of (a). (c) Legend of the ground truth 

. 

A sensitivity analysis was performed to assess the impact of the sampling rate and 

determine the optimal rate. This was achieved by varying the sampling rate and the 

results are displayed in Figure 18. 

 

Figure 18. Flevoland OA given a different sample rate. 

 

As depicted in the figure, the overall accuracy (OA) is around 62% when the sampling 

rate is set at 1%, however, it rapidly increases to 93% as the rate approaches 4%. This 

highlights the usefulness and performance of the CV-CNN. The accuracy remains 

stable at 96% when the rate exceeds 10%. Therefore, a sampling rate of 10% is deemed 

sufficient for the Flevoland dataset. During the experiment, the samples were split into 

two portions, with 9% utilized for training and 1% for validation. All pixels that have 

a corresponding ground-truth map were used as testing data. 

As can be observed, the accuracy of classification improves as the training sample rate 

increases, but eventually reaches a level of saturation. Our experience shows that this 



 

 

49 

 

saturation level is specific to the dataset, task, and network architecture. If the 

distribution of the same class is homogeneous and there is a significant difference 

between classes, even a low training sample rate can yield good results. 

For classification problems with a small number of classes, a lower sample rate is 

usually sufficient. However, a more complex network architecture requires more 

training data. The topic of sampling rate in SAR image classification has been explored 

in several studies. Hou et al. selected approximately 5% of the training samples per 

class, Guo et al. utilized a 10% training sample rate, and Jiao and Fang employed a 5% 

training sample rate. Based on these findings, we recommend a general range of 5% 

to 10% for the sample rate in real-world applications. This comparison appears that 

this method has good performance in classifying pixels, especially for the lucerne, 

water, and bare soil classes. The results are in good agreement with the ground truth, 

as can be seen from the comparison between Figures 17(b) and 19(b). 

 

Figure 19. Classification results of the proposed algorithm on the first data set. (a) Result of whole map 

classification. (b) Result overlaid with the ground-truth map. 

 

Table 10 displays the results of the CV-CNN's classification accuracy on each 

individual class in the ground truth. The CV-CNN's overall accuracy (OA) is recorded 

at 96.2%. Table 11 presents the comparison between the classes of the CV-CNN 

model, in the form of a confusion matrix. By transitioning the CNN from real to 

complex, the CV-CNN achieved an improvement of 1.2 in terms of the classification 

error rate. 
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Table 10 . Classification accuracy of the whole ground truth (%). 

 

 

Table 11. Confusion Matrix of the whole ground truth (%) for CV-CNN. 

 

 

In conclusion, the CV-CNN method demonstrated superior performance in the 

classification of the Flevoland dataset compared to other methods. The utilization of 

phase information, which is a significant aspect of SAR images, played a significant 

role in achieving this improved accuracy. The results showed an overall accuracy of 

96.2% with the majority of classes having an accuracy higher than 95%. The accuracy 

of buildings was relatively lower due to a limited number of training samples. The 

analysis of the histogram of different species also indicated that phase information can 

be an effective feature for the classification of POLSAR images. 
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VI. CONCLUSION 

Table 12 presents the performance of the three different classification 

methodes, namely Mahalanobis distance, Support Vector Machine (SVM), and 

Complex-Valued Convolutional Neural Network (CV-CNN), in classifying various 

land cover categories of Flevoland. Each row of the table represents a different land 

cover category, and the columns show the percentage of correctly classified samples 

for each method. For example, for the Water class, the Mahalanobis distance method 

correctly classified 60.39% of the samples, while SVM and CV-CNN achieved higher 

accuracies of 94.51% and 99.4%, respectively. Similarly, for the Forest class, 

Mahalanobis distance, SVM, and CV-CNN achieved accuracies of 63.67%, 80.19%, 

and 96.8%, respectively. 

 

Table 12. Classification accuracy for whole data with three different classification methods. 

CLASSES MAHALANOBIS 

DISTANCE  

SVM CV-

CNN 

Water 60.39 94.51 99.4 

Forest 63.67 80.19 96.8 

Lucerne 60.21 85.71 98.1 

Grass 57.49 53.43 90.0 

Rapeseed 59.74 78.81 92.0 

Beet 77.66 77.20 97.6 

Potatoes 52.28 73.62 96.7 

Peas 58.61 75.82 98.7 

Stem beans 73.43 78.38 98.8 

Bare soil 92.01 69.14 98.8 

Wheat A 55.21 75.90 95.0 

Wheat B 67.67 52.13 94.2 

Wheat C 69.11 85.06 96.6 

Barely 77.88 70.62 94.5 

Building 68.57 70.10 83.2 

OVERALL 

ACCURACY 

63.80% 77.96% 96.2% 
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The overall accuracy, which represents the percentage of correctly classified samples 

across all classes, is presented in the last row of the table. The Mahalanobis distance 

and SVM methods achieved overall accuracies of 63.80% and 77.96%, respectively, 

while the CV-CNN method achieved the highest overall accuracy of 96.2%. 

The aim of the study was to assess the performance of different classification 

algorithms on the Flevoland dataset, which is a subset of a full polarimetric SAR 

image. This dataset is particularly challenging due to the diversity of the landscapes it 

depicts. The results of the algorithms were compared to other commonly used methods 

in the field, Mahalanobis distance, Support Vector Machine (SVM), and Complex-

Valued Convolutional Neural Network (CV-CNN). 

The study concludes that the CV-CNN method is superior to traditional methods for 

classifying SAR images. This superiority is attributed to the effective utilization of 

phase information in the CV-CNN, which is a crucial characteristic of SAR images. 

The results of the study demonstrate the potential of CNNs for processing SAR images, 

thereby paving the way for further research in this area. The study's findings show that 

significant improvements in the accuracy of CV-CNN can be achieved, thereby 

extending the range of potential applications for CV-CNN in SAR image 

interpretation. 
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